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ABSTRACT

In relation to the leaming of mathematics, algebra occupies a very special place,
both because it is in itself a powerful tool for solving problems and modelling
situations, and also because it is essential to the learning of so many other parts of

~ mathematics.

On the other hand, the teaching of algebra has proven to be a difficult task to
accomplish, to the extent of algebra itself being sometimes considered the border line
which separates those who can from those who cannot learn mathematics.

A review of the research literature shows that no clear characterisation of the
algebraic activity has been available, and that for this reason research has produced only

a local understanding of aspects of the learning of algebra.

The research problem mvesugated in this dlssertatlon is prec:isely to provnde a

“clear chamctensatlon of the algebralc activity. .

Our research has three parts:

(i) atheoretical characterisation of algebraic thinking, which is shown to be
distinct from algebra; in our framework we propose that algebraic thinking
is | B

* thinking arithmetically,
* thinking internally, and
. thinking_analyticdlly.
and cach of those characteristics are explained and analysed;

(ii) astudy of the historical development of algebra and of algebraic thinking,
in this study it is shown that our characterisation of algebraic thinkiizg
provides an adequate framework for understanding the tensions involved
in the production of an algebraic kndwledgé in different historically
situated mathematical cultures, and also that the characteristics of the
algebraic knowledge of each of those mathematical cultures can only be
understood in the context of their broader assumptions, particiiigrly in
relation to the concept of number.




(i) an experimental study, in which we examine the models used by

secondary school students, both from Brazil and from England, to solve
"algebraic verbal problems" and "secret number problems”; it is shown
that our characterisation of algebraic thinking provides an adequate
framework for distinguishing different types of solutions, as well as for
identifying the sources of errors and difficulties in those students'
solutions.

The key notions elicited by our research are those of:

@
(b)

©

(d)

©
(0

“The findings of our research show that although it can facilitate the leaming of ~ *
certain early aspects of algebra, the use of non-algebraic models—such as the scale-

intrasystemic and extrasystemic meaning;

different modes of thinking as operating within different Semantical
Fields;,

the development of an algebraic mode of thinking as a process of cultural
immersion— both in history and for individual learners;

ontological and symbolical conceptions of number, and their relationship
to algebraic thinking and other modes of manipulating arithmetical
refationships; ' |

the arithmetical ariculation as a central aspect of algebraic thinking; and,
the place and role of algebraic notation in relation to algebraic thinking.

balance or areas—to "explain" paricular algebraic facts, coniribute, in fact, to the
constitution of obstacles to the development of an algebraic mode of thinking; not only

because the sources of meaning in those models are completely distinct from those in
algebraic thinking, but also because the direct manipulation of numbers as meaSures,
by manipulating the objects measured by the numbers, is deeply conflicting with a
symbolic understanding of number, which is a necessary aspect of algebraic thinking.
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1.0 THE RESEARCH PROBLEM

Algebra has always been a problematic area in school mathematics, while at the
same time being one of the essential parts of mathematics to grasp if one wishes to learn
and understand science and mathematics beyond the most elementary level.

A good deal of effort has been put both into developing new teaching programmes
and into developing theoretical frameworks which support the development of such

teaching programmes.

At the beginning of our research, our main interest was in how people give meaning
to the symbolism of mathematics; for this reason, we have always been aware that dealing
with the same expression can be done on the basis of different understandings, and that
attributing the possession of a certain form knowledge by simply verifying the ability to
deal with certain types of expressions is an approach bound to produce incorrect readings
of the learners' knowledge. At this point Dr Alan Bell suggested that we concentrate our
study in the field of algebra, both because of the need to restrict and delimit the
mathematical topic of our research—for the obvious reason of the time available—and
because of the explicit emphasis of symbolism in algebra.

Gradually, we had become more and more aware of the fact that there was a clear
difference between students explanations of their solutions of "algebraic verbal problems”
and that which would correspond to a verbal description of an "algebraic” solution,

In reviewing the research carried out until now on the difficulties faced by students
in the learning and use of algebra, we were led to two conclusions:

(i) apart from the general theories of intellectual development, which are too general
and provide little insight into the nature of the mathematical activity, no clear
characterisation of algebraic thinking was available;

(ii) as a consequence, research into the learning and use of algebra was
ill-informed, and unable to produce deep and unifying results or insights; as we will show
on chapter 2, most results from research on the learning and use of algebra are local and
descriptive of failure, rather than offering a positive characterisation of students
knowledge.

The research problem we decided to investigate, then, was twofold. First, and
crucial, we had to develop a characterisation for algebraic thinking, in order to be able to

compare students' solutions with that which we would expect to be present in an algebraic
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solution. Wealso decided that such a characterisation would have to be useful not only to
produce understanding of what happens with students, but also to produce understanding
of the historical development of algebra, and to offer a framework applicable from
elementary school algebra to abstract algebra. Second, we decided to investigate students’
solutions to "algebraic verbal problems"” in order to understand what mode of thinking—if
not an algebraic one—those students were using to approach the problems. This was also
essential, both because we would be able to test our characterisation's ability to distinguish
different types of solution and identify sources of errors, and because by understanding the
models used by the students we would be in the position of better understanding the
possible obstacles they would face in the learning of algebra.

By providing such a characterisation of algebraic thinking, we also produced a
much better understanding of what it is that we want our students to learn when we teach
them algebra.

In the process of our investigation, both in the theoretical and experimental parts,
many new aspects of the research problem were revealed, and they are discussed in
different parts of this dissertation. To try an exhaustive presentation of those many aspects
at this early point is, we think, inadequate, mainly because only in the the light of specific
parts of the argument their relevance is understood. We prefer, thus, to describe our
research problem, at this point, in its simplest form: to provide a characterisation of
algebraic thinking, 10 test thc_ adéquaéy of this characterisation in the ex'aminatio_n‘fof
students’ mathematical éctivity,_ and to invesﬁgatc a specific part of that activity, nat"nely;
the solution of "algebraic verbal problems.”

In Chapter 5, General Discussion, we will further examine general issues related to
our characterisation, but from the point of view of the detailed insights accumulated along
our investigation.

1,1 THE NATURE OF MATHEMATICS

The first task we must face in order to provide a clear picture of our research
approach, is to clarify what we understand to be the nature of mathematics.

Our main concern will not be with the internal nature of mathematics, eg, how it is
organised, or how its statements are shown to be correct (and what this means); we will
rather examine the place mathematics occupies within the frame of human thinking.
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A dichotomy which has been discussed in various forms and which provides a
useful starting point, is that composed, on the one hand, by mathematics as something that
exists "in the world," and as such is independent of the existence of human beings, and on
the other hand, by mathematics as a creation of human mind, and only existing within each
human being.

The central problems with such radical formulations are these. If one follows the
former position, ie, the Platonic idealism, it is difficult to explain why it took so long for
many aspects of mathematics which are conceptually simple to define to appear, as, for
example, the notion of group structure, which can be immediately grasped from number
systems. The second formulation brings with it a different problem; if "it all happens within
our minds,” how is it possible at all that mathematical knowledge accumulates, once
everything would have to be re-created from the beginning by each individual.

These are, of course, simplifications of the problems faced by each of the two
positions, but they provide enough ground for one to appreciate the value of the
contribution offered by Leslie White in relation to the subject of the place—or places—
occupied by mathematics in the framework of human existence.

In an extremely interesting paper, White (1956) discusses precisely why it is not
correct to oppose those two views, and offers a third way, which not only solves the
difficulties we have mentioned, but also opens a new perspective on the learning and
understanding of mathematics. _

Briefly stated, White's thesis is that mathematics is part of cultures. From this point
of view, it is independent of individual human minds, which have to "discover" it in the
process of learning the existing mathematical knowledge, but at the same time, mathematics
is a human invention, and as part of culture totally dependent on the existence of human
beings.

According to White,

"Culture is the anthropologist's technical term for the mode of life of any
people, no matter how primitive or advanced. It is the generic term of which
civilization is a specific term. The mode of life, or culture, of the human
species is distinguished from that of all other species by the use of
symbols...Every people lives not merely in a habitat of mountains or plains, of
lakes, woods, and starry heavens, but in a setting of beliefs, customs, dwellings,
tools, and rituals as well." (op. cit., pp2351-2352)
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It is crucial to understand that, according to this view, mathematics is part of a
culture's way of "seeing” the world, and consequently of its way of organising it; in this
context, our conception of mathematics molds and is molded by our conception of the
world as much as it happens with religious affairs.

On the one hand, it seems undoubted that the whole content of mathematics could

be reconstructed in a historical development beginning with, say, a group of Amazonian.

native indians, but to say it could happen, is only to affirm our belief that all human beings
share the same type of "hardware," the same physiological conditions to do it—
neurologically or otherwise. But as White {op. cit., p2352) says, "every individual is born
into a man-made world of culture, as well as the world of nature.” It is that culture that
provides the "template,” not "raw nature" or some "primitive nature”: "Had Newton been
reared in Hotentot culture, he would have calculated as a Hotentot.” (White, op. cit.,
p2353)

This is our point of departure: Algebraic Thinking as a particular way of organising
the world, as a way of modelling it and of manipulating those models. The central aim of
this dissertation is, thus, to establish what this form of modelling the world—algebraic
thinking—is, the tensions involved in different manifestations of it, and how this mode of
thinking might develop within or be barred from the conceptual framework of different
mathematical cultures.

From this point of view, our study of the history of algebra and of algebraic

thinking will be conducted as much as possible within the framework of each culture -

examined, and not in a search of chained results across time and not in search of "origins"
as such; our historical study will concentrate, however, on the mathematical cultures, rather
than exploring all other cultural factors, like economy, social and political organisation,
religions, and educational systems. It is not the case that this "epistemological closure," as
Rashed (1984) calls it, goes without we paying the price of missing important information
regarding which kinds of cultural contexts make a suitable ground for given types of
mathematical cultures. Nevertheless, we think that ours is a necessary first step, that it is
necessary to study the articulation of algebraic thinking within different mathematical
cultures; in many instances, however, we will be able to establish some links between
mathematical cultures and the broader context of the cultures where they belong.

When we say that mathematics is part of culture, we are not referring only to the
~ contents of mathematics!, but also-—and from the point of view of our research, much

1Bg, theorems, algorithms, etc.
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more important—we are referring to those forms of mathematical activity, those modes of
mathematical thinking, which are seen as relevant, or even legitimate, within a culture.
Within a given culture, number and geometric magnitudes may be understood exclusively
as distinct and irreconcileable things; in another culture, to associate numbers and things
may be understood as a magic act—with its possible consequences—and specific diagrams
may represent deities or magic beings. In yet another, there may be an explicit antagonism
to too much explanation, as one would find in Euclid's proofs, for example.

1.2 CASE
FROM CULTURAL STUDIES IN PSYCHOLOGY

Our first example of how mathematical activity presents itself as a cultural trait, is
taken from the work of the Soviet psychologist A.R. Luria, who was a distinguished
member of the group of psychologists who studied, under the direction and inspiration of
L.Vygotsky, the impact of the new Revolutionary order—in post-1917 Soviet Union—on
people's consciousness and knowledge.

Luria (1976, p3) presents the research problem that is examined, by saying that,

"It seems surprising that the science of psychology has avoided the idea that
many mental processes are social and historical in origin, or that important
manifestations of human consciousness have been directly shaped by the basic

practices of human activity and the actual forms of cullure.”

In this book (Luria, 1976), one finds a number of interview transcriptions, in
which the subjects are either illiterate peasanté or peasants who had been to school or
engaged in activities of political organisation. Luria and his assistants asked them simple
questions involving, for example, the classification of objects—Chapter 3, "Generalization
and Abstraction,” the chapter from which we will extract our examples.

The crucial point in the theoretical framework used by Luria to analyse the
responses is that,

"...higher cognitive activities remain socichistorical in nature, and that the
structure of mental activity—not just the specific content but also the
general forms basic to all cognitive processes—change in the course

of historicat development.” (op. cit., p8) (our emphésis)
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~ and children's intellectual development is also understood from this perspective (op. cit.,
P9).

The typical experiment in Chapter 3, is to present the subject with drawings of
objects and ask for the one that "doesn't belong” to the group.
We quote a somewhat long protocol, from pages 59-60:

“Subject: Abdy-Gap., age sixty-tWo, illiterate peasant from remoie village. After
the task is explained, he is given the series: knife-saw-wheel-hammer.
'They're all needed here. Every one of those things. The saw to chop
firewood, the others for other jobs.'
Evaluates pbjects in terms of ‘necessity’ instead of classifying them.
No, threé of those things belong in one group. You can use
one word for them that you can't for the other one.
‘Maybe it's hammer? But it's also needed. You can drive nails with it.'
The principle of classification is explained: three of the objects are 'tools.’
‘But you can sharpen things with a wheel. If it's a wheel from an araba
[kind of bullock cart], why'd they put it here?'
Subject’s ability to learn the principle of classification is tested through another
series: bayonet-riﬂe-sword—kmjfé._ | -

'There's nothing you can leave out here! The bayonet is part of the gun. A

man's got to wear the dagger on his left side and the rifle on the other.'
Again employs the idea of necessity to group objects.

The principle of classification is explained: three of the objects can be used
o cﬁt, bat the rifle cannot. -

'It1l shoot from a distance, but up close it can also cut.’

He is then given the series finger-mouth-ear-eye and told that three objects
are found on the head, the fourth on the body.

'You say the finger isn't needed here. But if a fellow is missing an ear, he
can't hear, All these arc needed, they all fit in. If a man's missing a finger,
he can't do a thing, not even move a bed.’

Applies same principle as in preceding response.

Principle is explained once again.

'No that's not true, you can't do it that way. You have to keep all these

things logethéﬁ "
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Luria himself expresses the central character of this passage very clearly:

"One could scarcely find a more clear-cut example 1o prove that for some people

abstract classification is a wholly alien procedure.” (ibid) (our emphasis)

The distinction Luria uses throughout the chapter is that between "situational” or
"concrete” thinking, and "abstract” or logical" thinking. The former two refer to
classifications based on everyday practical usage, while the other two refer to classification
based on properties of those objects such as to produce classifications like tools, animals,
etc..

Luria's comment on the procedure being alien to that subject is extremely
significant, specially because in many of the other protocols one finds the subjects
admitting that an "abstract” classification could indeed apply to those objects, but still then
refuse to use it unless prompted to (eg, op. cit., p61).

The important suggestion contained here, which Luria naturally elaborates further,
is that it is the culture in which those subjects live, their cultural practice—and not their
intellectnal development in the sense of stages of development somewhat "natural” to the
human race—which predominantly molds their responses. _

A similar situation was observed in other studies, for example, in Gay and Cole
(1967), where the sortin g abilities of people of the Kpelle of Liberia was tested.

Another instance, which is somewhat distinct, but has strong implications to the
issues in question, is to be found in Rik Pinxten's study of the North American Navajo
Indian's conception of space (Pinxten, 1988); Pinxten found that for the Navajos, the
world is in perpetual motion, and can only be understood so, and it ts, thus, described in
terms of movement, not in terms of static objects. In this context, the Navajos had no word
for angle, as in each case the movement producing it was described instead; the process of
introducing a new word to denominate angle in a static manner, a requirement for the
people of a Navajo Reservation to approach White geometry, was important enough to
require a discussion in the Council of the tribe, and the condition that the word would not
be known to any white person, as it meant a weakening of their cultural position2, The

2This episode was described in detail in a presentation given by Pinxten at Cambridge
University, in 1988,
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reader is enthusiastically referred to Pinxten's book, as it provides vivid and illuminating
insights for anyone interested in the process of cultural interaction, in particular those
involving concepts we—White Men—would classify as mathematical matters.

FROM THE CLASSROOM

Our second instance, is presented in Freudenthal (1978, p242ff). It is essentialy a
teaching experiment, probably aimed at evaluating the efficiency of a certain teaching
method3; we are not told explicitly of the original aims,

Two groups, A and B, each of which composed by 25 students, were taught the
same subject, elements of statistics; in group A, the teaching used 70 minutes, in group B,
130 minutes. This difference in time spent was allowed so to guarantee that each group had
worked through the material at a convenient pace.

Group A belonged to a school leading to University and higher vocational studies;
group B belonged to a school leading to lower vocational instruction. In both cases they
were 7th graders (13-14 years-old).

The teaching method employed in both groups was based on investigation and
discussion of topics related to everyday life, such as going to the cinema. A test was
applied, at the end of the teaching period, aimed "at ascertaining whether the [students] had
understood the importance of size and representativity of samples in a qualitative sense,".
(op. cit., p243) * _

One of the questions in the test was,

"In order to invéstigale how many people watch a certain television programme,
the N.O.S. arbitraﬁly chose 1500 people to fili out each day on a form which
programme they had watched that day.

Right/Wrong Explanation.” (ibid)

Freudenthal says that in group A the students’ answers were "predominantly
satisfactory,” but that 22 out of the 25 students in group B "did not grasp what was at
stake,” and quotes the answers of five girls:

30ne can guess, given the approach of the teaching as described in the book, that it was part
of developing the "Realistic" approach to teaching statistics.
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"[1]) Wrong, because the people can know themselves which programme they
like to watch.

{2] Wrong, I find it ridiculous to do this.

3] Wi'bﬁg, it is not normal, it only costs the people postage.

{41 Wrong, I think it is not their business, the people must know themselves
which TV programme they want to watch.

[5) Wrong, because it is none of their business which programmes they watched
that day."” (op. cit., p244)

Freudenthal's comments go directly to the heart of the matter:

"It is a paragon of—catastrophic—failure to grasp the context—I mean the
context which was of course intended, the mathematical context. The 22 pupils
who failed did see a context—the social one. They could not free themselves
from it, they could not achieve the required change of perspective. Was this so
silty? The longer I think about it, the more I become prone to answer the query
in the negative and to ask a counter query: Which screw was loose with the
pupils of group A {and the three girls of group B who did it well) that they
obeyed the crooked wishes of the mathematician, obediently disregarded the
social context, and had no problems in accepting the mathematical context?" (op.
' cit., p245) '

There are some very important points here.

First, the distinction between the social context and the mathematical context; the
former could be substituted by situational context, providing an adequate link with Luria's
subjects.

The second point is that we are led to the need to investigate and characterise the
contexts of mathematics, ie, the modes of thinking which make the intended mathematical
activities meaningful, but also the ways in which students in group B made sense of the
material presented to them so as to convince the teacher that they were progressing through
the material. To understand the contexts of mathematics is, we think, a necessary condition
to be fulfilled if we—researchers and teachers—are to understand what it is that we want
our children to learn.

Finally, when Freudenthal speaks of a "change of perspective,” and of a "loose
screw,” we think that a correct interpretation has to lead to the fact that an “immersion" into
the mathematical context is a necessary condition for the learning of the various aspectsw
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and parts of the mathematical knowledge, and we are again led to the need of closely
investigating which are the mathematical contexts we are presenting to the students, and
which kind of thinking is necessary to operate successfully within those contexts.

It is the central aim of the research work presented in this dissertation to provide
such a characterisation in the case of algebraic thinking, and to show that there is an
intention that drives the development and acquisition of algebraic knowledge.

From a much broader point of view, Bishop (1988) discusses the proécss of
learning and developing mathematical knowledge as a cultural process, ie, one which
requires the immersion into and acceptation of another culture—or ethos, as it is sometimes
more adequate to say, notably in relation to children— or a complex, and many times slow,
transformation of a mathematical culture (eg, the acceptance of negative numbers as
"equals” to positive numbers).

Among many interesting and well supported points, Bishop contrasts knowledge as
"a way of doing" and knowledge as "a way of knowing.” (op. cit., p3) The importance of
this distinction is to provide a way of characterising mathematics (Which ways of knowing
does it comprise?) which makes of mathematics a driving force in producing knowledge of
certain kindg and in certain ways. The emphasis on the plural is important: it accounts for
different modes of thinking within mathematics, and also for individual differences within
and across those modes. Algebraic thinking is one of the modes of thinking within~
‘mathematics.

1.3 WHAT ALGEBRAIC THINKING 1S

We now proceed to present our characierisation of algebraic thinking.

The first point on which we will insist, is that there is a clear distinction between
algebra and algebraic thinking. This distinction is not related to a separation between
process and product, nor it is intended to distinguish "what goes inside our minds” from
"what is outside our minds."

"Thinking" in algebraic thinking, has to be understood as an indication of algebraic
thinking referring to a way of producing meaning, while algebra can be understood as a
content to be made sense of; it is possible, of course, to make sense of algebra in many
different ways, and algebraic thinking is only one of them.,

"Thinking" in algebraic thinking can also be understood as in expressions like
religious thinking or political thinking. In both cases we have forms of organising the
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world: in the former, through dealing with transcendental aspects of existence, in the latter
through dealing with the structures of power and representation of individual and collective
rights4. Algebraic thinking is a way of organising the world by modelling situations and
manipulating those models in a certain way, which we will describe a few paragraphs
ahead. All three modes of thinking mentioned here can be valued differently by different
societies, and they can, indeed, be altogether ignored by some of them, or be a dominant
form of organising the world, as it is the case of algebraic thinking in many contemporary
societies, specially through science and technology (see, for example, Davis and Hersh,
1988).

In our characterisation, algebraic thinking is better understood as an intention, ie,
"a way in which I want to do things," even in the cases in which the concepts or methods
necessary to carry through that intention are not available or developed. It is only by
adopting this approach that we can understand the mechanisms involved in the algebraic
development of an algebraic knowledge, be it in historically situated cultures or in
children's learning; the intention of manipulating an equation algebraically must necessarily
precede the technical ability to do it, unless we postulate that people learning it find out
purely by chance a method that "works" and only then reflects upon it and transforms it
into a piece of knowledge that can be deliberately used. It is true, however, that the
development of such an intention is many times produced through the exposition to other
people doing it, for example the teacher solving equations on the blackboard, a picture
which remains for many students as inexplicable as it was when they first saw it, while for
others it may provide the paradigm that molds the intention and gives meaning to the whole
activity, possibly in a way very similar to that by which some people become political
thinkers by being immersed into an—-at first inexplicable—environment in which questions
relative to power and the representatidn of individual and collective rights are in evidence.

This is not to say, of course, that "teaching by example” is in itself the best, or even
a good, teaching approach, but only to show that the way in which our characterisation is
developed can account for the well known fact that even the most rigid and thoughtless
presentation of algebra will almost certainly produce a couple of pupils who "understand

41t is important to observe that, no matter how tempting these propositions might be,
"God" is not a necessary content of religious thinking, and that "State” is not a necessary
content of political thinking. Modes of thinking, as we understand them, have no “necessary
content,” as there are other factors which strongly influence the production of "content,"
such as material needs—the problems to be solved, for example—and the overall possibilities
of the culture in which the process is developing.
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it," In fact, were it not for this effect, mathematicians would almost certainly be an extinct
species...

But our objective as educators must not be only the perpetuation of the homo
mathematicus, but rather to offer to the largest number possible of people the greatest
variety possible of ways of organising the world, and given the conceptual framework in
which we understand algebraic thinking, this must mean that teaching has to address
directly the fact that thinking algebraically requires a shift of perspective, a "loose screw,"
a specific intention, and this can only be achieved by consciously comparing different ways
of modelling the same situation, and openly discussing the characteristics, virtues, and
difficulties of each method used.

We finally arrive at the direct characterisation: To think algebraically is,
(i) To think ARITHMETICALLY, and
(ii)) To think INTERNALLY, and

(iii) To think ANALITICALLY.

First we will explain what we mean by each of those characteristics, and then we
will discuss their relevance for characterising algebraic thinking.

Characteristic (i), the arithmeticity of algebraic thinking, might initially sound

almost paradoxical, particularly because mathematical educators have for a long time
adopted the position of opposing arithmetical and algebraic solutions to verbal problems. It
is true, however, that the basic material of both arithmetic and of elementary algebra is the
same: numbers and arithmetical operations.

In the sense used in our characterisation, arithmeticity means precisely "modelling
in numbers," which naturally implies the use of the arithmetical operations in order to
produce the relationships which constitute the model. Descartes’ Analytical Geometry is
"modelling in numbers,” as is al-Khwarizmi's algebraic method for solving problems; but
"problems in numbers" can be as well modelled by using geometry or whole-part relations,
which are pon-arithmetical models.

Ar/t‘hmetici:y means, for example, that a problem involving the determination of a
speed, a distance, a weight, or a the size of the sun is seen as the problem of determining a
number which satisfies some given arithmetical relationships. Any other considerations,
such as the maker of the car, the unit of measurement—iniles or kilometres—the shape of
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the object, or the colour of the sunlight, are irrelevant as soon as the necessary arithmetical
relationships are established.

As we have said before, a "problem in numbers"” can be solved by modelling it back
into, for example, a geometrical configuration or a whole-part relationship. Let us examine
an example.

Suppose that a given problem leads to the determination of a number which satisfies
the equation

3x + 150 = 450 (I

An algebraic solution is immediately visible, and we will make no comments on it.
It is possible, however, that the solver produces the following solution:

"The 450 is composed of two parts, one of which is 150, the problem (ells me.
So, if from the whole, ie, 450, I remove one of the parts, in this case, 150, I
will obtain the other part. So, the other pari is 300. Bui this other part is
composed of three smaller parts. In order to determine each of them, I would

have to share the 300 into 3 parts, ie, each of the small parts is 100."

-.Of course, this solution produces a correct result, and in fact this kind of solution is

many times taught to students as a way. of “explaining" equations.
The true character of this type of solution——the use of a whole-part model—only
becomes apparent when we try to apply it to other "formally" identical equations, for

example,
3x + 150 = 60 (I1)
or
37x + 10 = 94 (11X)

In equation (II), the first half of the previous whole-part model does not apply, as
the whole is smaller than one of the parts; in equation (IIT), the second half of the model is
difficult to apply, because the "sharing" into a non-integer "number" of parts is, to say the
least, a not very "natural” way of putting it.
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There are other difficulties, such as dealing with equations like,
150 - 3x = 94 av)

but those difficulties will be dealt with on the chapter on the Experimental Study.

What we wanted to make clear, is the essential difference between dealing with
those equations internally, ie, by reference only to the properties of the operations and the
equality relation, and dealing with them by modelling them back into a non-arithmetical
context; the internalism in our characterisation of algebraic thinking is precisely intended at
enabling us to distinguish internal solutions, ie, those which proceed within the boundaries
of the Semantical Field of numbers and arithmetical operations, and not by the
manipulation of non-arithmetical (in our sense) models.

The notion of Semantical Field appears first in linguistics (see, for example, Miller
and Johnson-Laird, 1976; Miller, 1978; Grandy, 1987), where it is used as a tool for
explaining how words—as opposed to sentential expressions—acquire meaning. A
technical discussion of Semantical Fields can be found in Grandy (op. cit), and it is
completely beyond the scope of this dissertation, Our own version of a Semantical Field,
which in fact had been elaborated before we learned of its existence in linguistics, is much
simpler than its linguistic counterpart; in our sense, a Semantical Field denotes a set of
meanings generated by a given "way of knowing." Mathematical expressions, an equation,
for example, have different meanings within the Semantical Field of numbers and
arithmetical operations and within the Semantical Field of whole-part relationshipss, as
also have the arithmetical operations.

Within the Semantical Field of numbers and arithmetical operations, arithmeticat
operations are objects, ie, they have properties and provide information on what can and
must be done to manipulate a relationship to a required effect; within other Semantical
Fields, as for example in the non-algebraic solution of equation (I) presented above, the
arithmetical operations are used only as foels which allow us to evaluate parts as
necessary.

It is characteristic of algebraic thinking that arithmetical operations
become objects, while also being used as tools and this is only a consequence of

Swinston et al. (1987), describes "A taxonomy of part-whole or meronymic relations...to
explain the ordinary English-speaker's use of the term 'part of' and its cognates." In a sense,
Vergnaud's analysis of additive problems produces a taxonomy of whole-part relations as
applied to modelling those problems.
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the combined requirements of the arithmeticism and of the internalism of algebraic
thinking.

Third, and finally, the analiticity of algebraic thinking.
Pappus says:

"Now, analysis is a method of taking what is sought as though it were admitted
and passing from it through its consequences in order to something which is
admitted as a result of synthesis; for in analysis we suppose that which is sought
to be already done, and we inquire what it is from which this comes about, and
again what is the antecedent cause of the latter, and so on until, by retracing our
steps, we light upon something already known or ranking as a first principie;
and such a method we call analysis, as being a reverse solution, (...} But in
synthesis, proceeding in the opposite way, we suppose to be already done that
which was last reached in the analysis, and arranging in their natural order as
consequents what were formerly antecedents and linking them one with another,
we finally arrive at the construction of what was sought; and this we call
synthesis." (Fauvell and Gray, 1990, p209)

In synthesis, one deals only with "what is known and true,” and through a chain of
logical deductions, other true statements are obtained; it is the method exclusively used in
the whole of Euclid's ElementsS. In-analysis, on the other hand, what is "unknown" has to
be taken as "known," with the "unknown" elements being used "as if they were know," as
part of the relationships which are to be manipulated until one arrives at "something already
known," ie, the "unknown" elements have to be manipulated on the basis of properties
general to the class of objects to which they belong, and not as an actual manipulation of a
given, specific, object. This seemingly innocuous situation in analysis, is strongly relevant
in relation to Greek mathematics, as we will see in Chapter 3, precisely because

"...analysis is immediately concerned with the geﬁerality of the procedure,
[while) synthesis is, in accordance with the fundamental Greek conception of the
objects of mathemalics, obliged to 'realize’ this general procedure in an

unequivocally determinate object." (Klein, 1968, p163)

6In the chapter on the history of algebra and of aigebraic thinking, we will examine in detail
why the generality of Euclid's results could only be achieved through synthetic proofs, and-
what forms analysis takes in Greek mathemalics,
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Pappus distinguishes, moreover, two types of analysis:

"...one, whose object is to scek the truth, being called theoretical [zetetic, from
to search'], and the other, whose object is to find something set for finding,
being called problematical [poristic, from 'to supply']." (Fauvell and Gray,
1990)

Seen from this point of view, the analiticity of algebraic thinking serves to
characterise it as a "method for searching the truth"’—as one sees in Diophantus, in the
Islamic algebraists, in Vieta and in Descartes—but also to characterise the fact that in
algebraic thinking the "unknown" is treated as "known."

The explicit association of algebra and analysis is found in many authors
throughout history, but the forms and the reach of the analytic processes in algebra vary
tremendously in different mathematical cultures, a theme that we will examine closely.
Nevertheless, analiticity is clearly not sufficient to characterise algebraic thinking; as
Barrow said,

"...10 be sure analysis...seems to belong to mathematics no more than to
physics, ethics or any other science. For this is merely a part or species of logic,
or a manner of using reason in the solution of questions and in the finding or
proof of conclusions, and of a kind not rarely made use of in all other sciences.
Therefore it is not a part or species but rather the servant of mathematics; and no
more is synthesis, which is a manner of demonstrating theorems opposite and

converse to analysis.” (quoted in Whiteside, 1962, p198)8

® % ¥

7As Klein (1968, p279) says, "Algebra for Vieta meant a special procedure for discovery. It
was analysis in the sense of Plato, who opposed it to synthesis. Theon of Alexandria, who
introduced the term ‘analysis,’” defined it as the process that begins with the assumption of
what is sought and by deduction arrives at a known truth. This is why Vieta called his algebra
the analytic art. It performed the process of analysis, particularly for geometric problems.”
8Eyler (1840, p2} identifies algebra and analysis, but in a foolnote we read about the
dissenting voices: "Several mathematical writers make a distinction between Analysis and
Algebra. By the term Analysis, they undersiand the method of determining those general
rules which assist the understanding in all mathematical investigations: and by Algebra, the
instrument which this method employs for accomplishing that end. This is the definition
given by M. Bezout in the preface to his Algebra.”
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So, these are the three characteristics of algebraic thinking: arithmeticity,
internalism, and analiticity. We will now discuss some implications of this characterisation.

The first important point to be highlighted, is that our characterisation of algebraic
thinking does not imply in any form or to any extent, that algebraic thinking can only
happen in the context of symbolic—literal or other—notation. However, and this is
certainly a very attractive consequence of our characterisation, the compact algebraic
notation as it has developed—borrowing from the notation of arithmetic—is not only
possible in the context of algebraic thinking, but also adequate.

The reason for both its possibility and its adequacy is in the fact that the operations
used for manipulating algebraic expressions are exactly the same used to constitute them in
the first place: the arithmetical operations. When operating in Semantical Fields other that
that of numbers and arithmetical operations, the manipulation of the model is done, for
example, through composition and decomposition of wholes and parts, operations which
are simply and adequately described verbally or with the help of diagrams, while the actual
evaluation of the parts is done by using the arithmetical operations. There is nothing in the
algebraic manipulation of an algebraic expression that is not related to the elements (of the
base set of the operations), the operations and the equality: the "basic objects” of algebraic
thinking form a domain tight enough to permit the compact notation, as geometric
configurations in problems, for example, become irrelevant,

The second aspect which is highlighted by our characterisation, is the fact that in the
context of algebraic thinking, numbers can only be understood symbolically. By this we do
not mean the use of "symbolic notation," but that numbers are meaningful only in relation
to the properties of the operations that operate on them, and not in relation to any possible
interpretation of them in other mathematical or non-mathematical contexts. The notion of
"symbolic number" is discussed in much greater detail on Chapter 3.

Third, our model shows that by equating the learning of algebra with developing
the ability of "doing algebra,” be it solving equations or squaring binomials, the
mathematical educator is naturally led to incorrect readings of the didactic situation, as, for
example, legitimate models for solving one type of equation might well be meaningless in
relation to other types; unless we understand the models guiding the use of any piece of
knowledge, we are bound to impose our understanding on other people's actions—a -
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behaviour which leads, more often than not, to some form of misguided and authoritarian
cultural action®,

In the more specific case of algebra, the explanations for, for instance, students
being able to solve some linear equations, but not others, have ranged from "stages of
intellectual development” to "misconceptions derived from arithmetic,” but little has been
done in the direction of providing a framework in relation to which those difficulties can be
understood without recourse to ad hoc hypothesis!0. We think that our characterisation of
algebraic thinking provides precisely a framework in which pupils’ solutions can be
examined and understood, and which can guide the teaching of algebra in a much more
coherent and fruitful way than the previous models.

Fourth, and finally, we must stress that according to our characterisation, algebraic
thinking is not a priori a more powerful or more adequate mode of thinking than others,
not even within mathematics: it is simply different from other modes of thinking, From this
point of view, learning to think algebraically is as important as learning to think
geometrically or combinatorially; from a broader perspective, it is as important as learning
to think politically or religiously. It is the possibility of examining the world from different,
complementary and possibly conflicting, perspectives, that makes learning each of those
modes of thinking important!1.

Our characterisation of algebraic thinking puts much emphasis on the numerical
character of algebraic modelling.

o1t may be useful 1o think of a related behaviour in a different context. The teacher
complains to the school's psychologist: "The drawings Little Rom brings from home are all in
purple and black. I am a bit worried.” The psychologist examines the drawings and agrees
that they depict a "heavy” atmosphere: "Maybe the family is going through some crisis!”
etc.. In the worst case, the parents will be called and some form of counselling suggested; it
may well be that the parents do not really understand what is going on and are frightened
and agree. But, 1 say, it may well be the case that all the other celour pencils were lost by
Little Rom, or even that his family's cultural background is one in which black and purple do
not have the same connotations as in the teacher and psychologist's msthetics... The case of
"black and purple drawings" is a real one, told to me by a teacher who was alert enough to
investigate the matter properly. :

101n the case of the stage theories, the ad hoc element is provided by a characterisation of
the algebraic thinking that necessarily forces the conclusions arrived at by the theories, and
this results in a crystallisation of prejudices, rather than in understanding. In the next
chapter we returnt to this point.

111 think it was Proust who pointed oul that the true journey is nol seeing a thousand places
with a pair of eyes, but to sce one place with a thousand pairs of eyes.
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- If we consider abstract algebra, but also groups of permutations, groups of
symmetries, and polynomial rings, for example, it seems that such emphasis is not only
restrictive, but also incorrect, even if we limit ourselves to discussing "elementary
algebra.". We will argue, however, that this is not the case.

The central notion in the arithmetical operations, is that of "combining” two
elements of the base set to "produce” another element of the base set. Put in more formal
terms, the two original elements are not literally "combined,” as this would imply the need
of an explicit law of "combination.” We use, instead, the term "law of composition," and
say that this law of composition associates to each ordered pair of elements of the base set,
another element of the base set. It is perfectly clear not only that the "law of composition”
formulation is "inspired” by the arithmetical operations, but also that even when dealing
with an algebraic system in which the laws of composition are as abstract as one can
imagine, we are still psychologically satisfied that a®a1=1 is like "calculating." And it is,
in fact, technically irrelevant whether we think or not of "calculations,” as long as we do
not require that the actual "law" be exhibited.

The other important aspect here, is that of number. For the ancient Greek,
irrationals were not numbers, and negative numbers were simply unthinkable. The Chinese
accepted -negative numbers in specific mathematical contexts, but the notion was not
generalised. In Islamic mathematics, both zero and negative numbers were largely
disregarded, but surds were treated in some great detail. Even in the 19th century, there
were critics of negative numbers, and it was a long time before mathematicians fully
accepted imaginary numbers, while, in fact, they were "calculating” with them much before
a foundation was provided. It is clear that in Cardano, for example, V-4 does not
"measure” anything, nor has any similitude with any of the previously accepted numbers,
and, rightfully, they were called "quantities," not "numbers."

Today we call negatives, surds, fractions, complex, e, and 7, numbers. We do not
call quaternions numbers, but we naturally should, as there is nothing-to distinguish their
general "outlook"” from that of complex numbers; in the same way, we may ask ourselves
Why not to call polynomials, matrices, permutations, etc., numbers ? Certainly there is no
technical damage done. '
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Strictly speaking, the following "definition" is technically acceptable:

"Number is ahy clement of the base set of an algebraic system."

As we said before, once one is thinking algebraically, numbers are understood
symbolically, ie, they are dealt with only by reference to the properties of the arithmetical
operations. But this is exaétly the case with polynomials, matrices and permutations when
they are collapsed 12 into elements of the base set of an algebraic system;

Of course, the definition we provided does not correspond to the way in which we
use the word number. | _

Nevertheless, we think that by using arithmeticity, instead of a more sophisticated
form of characterisation for this aspect of algebraic thinking, at least two_importan't
functions are fulfilled: (i) the intuition generated by the arithmetical operations is clearly
preserved in our characterisation, in a way which is useful in extending algebraic thinking
for situations in which the base set is not a "numerical” set; and, (ii) the notion of sj:mbolic
number is highlighted, as our characterisation emphasises the distinction between the
symbolic treatment of number, ie, in the context of algebraic thinking, and other models
for representing and manipulating relationships involving numbers—as measure, for
example.

12we will return to this very essential and illuminating notion on Chapter 3. For the
moment, the following example should be sufficient: a polynomial f(x) in the formal
variable x is formally defined as an expression of the form ap+a x+...+a,x", and with this
"internal™ structure in view, we can speak, for example, of complete and incomplete
polynomials, etc. When we speak of an algebraic system in which the base set is a set of
polynomials, however, this "internal” structure is—at least temporarily—ceollapsed, and the
elements become f, g, etc.; it is only the properties of the operations which operate on them
that are relevant, here, not how ll}‘y eventually "deal” with the “internal" structure of the
polynomials.
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Chapter 2
A Study of Previous Research




2.1 INTRODUCTION

Algebra has been seen, for a long time, as a difficuit, although important, area
of school mathematics, and as a consequence a huge number of studies have been
carried out on the subject.

Our research has a "foundational” character, rather then a "didactic” one!l, and
for this reason we will not include in our examination the many teaching approaches
and experiments in algebra produced in the past years, as, for example, Alan Bell's
richly suggestive teaching experiment (Bell, 1989b); there are two exceptions, namely
Lesley Booth's further investigation into the difficulties identified by the CSMS algebra
survey, which throws light into the survey itself, and Davydov's approach to the
teaching of algebra in elementary school, which embodies a theoretical approach to the
problem which is radically different from the approaches we find in "Western"
literature. |

The review of the relevant literature which follows, is primarily aimed at three
aspects of the research on the learning of algebra: (i) the topics examined by research;
(ii) the underlying epistemological and methodological assumptions of those researches;
and, (iii) the issues raised by them.

We will not, however, present a thorough account of the available literature; we
choose, instead, to examine here only a selection of material which seemed sufficient to
allow a reflection on the research on the learning of algebra as a whole.

2.2 CRITICAL REVIEW OF THE PREVI ESEARCH
THE SOLO TAXONOMY

The SOLO Taxonomy was developed by Biggs and Collis in order to provide
educators with a general framework for assessing the quality of learning. In Biggs and
Collis (1982), quality is characterised as the answer to the question "how well," and
opposed to the quantitative aspect of learning, which is characterised as the answer to
"how much." At the very beginning of the preface, they say: |

"In this book, we suggest that the evaluation of thought, from childhood 10

adulthood, gives an important clue as to quality. That clue is structural

1 is never too much to emphasise that although ar this point we are concerned
primarily with the "foundational” side of our research, it naturally aims at providing a
solid foundation for the development of an approach and programme for the teaching
of algebra, as well as at providing a better understanding of the issues involved in
research on the leaming of algebra.
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organisation, which discriminates well leamed from poorly leamned material
in a way not unlike that in which mature thought is distinguishable from

immature thought.” (op. cit., pxi)

The key characteristic of the SOLO Taxonomy, is that it examines the outcome
of learning focusing on how the response is structured, rather than on whether a given
content was or was not learned. Although postulating that the structure of the responses
can be characterised by levels—from "concrete" to "abstract"—of progressing
complexity, they examined the characteristics of the traditional models of Stage
Theories of development, and concluded that they are inadequate to deal with the
assessment of the quality of learning, as: (i) they postulate a stability for the stages that
is not confirmed by research, ie, the same student answers at different levels at different
times and in relation to different situations; the concept of décalage, used by Piagetians
to account for this phenomenon, is too common to be only an exception, Biggs and
Collis say; (ii) they are intended to predict, on the basis of logically related tests, how a
person will respond to a given test; this possibility is based both on the stability of the
stages and on the measurability of the hyporhetical cognitive structure (op. cit., p22).

The crucial difference between the approach in the SOLO Taxonomy and the
Stage Theories, is that in the latter it is the Jearner that is categorised, whereas in the
former it is the outcome. This shift removes the need to appeal to the concept of
décalage as a corrective device, and at the same time makes for a better educational
instrument2; hypothetical cognitive structure is replaced by the SOLO Taxonomy in a
way similar to replacing ability by attainment. Biggs and Collis say that hypothetical
cognitive structure is not, in most cases, an issue to the teachers (see note 1).

The SOLO Taxonomy distinguishes 5§ levels of outcome, Prestuctural,
Unistructural, Multistructural, Relational, and Extended Abstract, which are
characterised in relation to three "dimensions”: (i) working memory capacity; (ii)
relating operation—the way in which cue and response relate; and (iii) closure and
consistency. A detailed explanation of those three aspects is provided in Biggs and
Collis (op. cit.).

In Chapter 4, the SOLO Taxonomy is used to analyse the responses to some
test-items given to students. We will briefly examine aspects of their analysis of one of
the items3.

2The stage theorist, on the basis of standard tests, suppose the adequacy of predicting
the possibility of a learner leaming a given material, to the exient of considering that
",..reading, as a symbolic and verbal activity, should not be taught until the high-school
cars.” (Furth's position, in Biggs and Collis, 1982, p21; see also p23)

The same criticism presented here, applies to the other sections of the chapter on
mathematics, and for this reason we will not examine them direcily.
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The following problem was proposed?:

You are to decide whether the following statements are true always,
sometimes, or never. Put a circle around the right answer, If you put a circle
around "sometimes” explain when the statement is true. All letters stand for

whole numbers or zero {(eg, 0, 1, 2, 3, etc.)

1. a+b=b+a Always
Never

Sometimes, that is, when _____

2, m+n+g=m+p+q Always
Never

Sometimes, that is, when

3. a+2b+2c=a+2b+4c Always
Never

Sometimes, that is, when

~According to the SOLO Taxonomy, the different levels would be indicated by
the following behaviours:

"Unistructural responses. At this level of response the students saw each
letter as representing one and only one number. . If,..one trial did not give a
satisfactory result, they gave up working on that item.

Multistructural responses. Students giving responses at this level tried a
couple of numbers and if they satisfied the relationship they drew their
conclusions on this basis...

Relational responses. At this level the students seemed to have extracted a
concept of ‘generalised’ number by which a symbol b, say, could be regarded
as an entity in its own right but having the same¢ properties as any
number with which they had previous experience...[our
emphasis]...Even though the responses showed that they possessed the

concept of generalised number, students responding at this level were unable

4 Although in the book we find a "minimal age" associated 1o the levels, the ages of the
students answering the tests are irrelevanl for the purpose of examining the difference in
outcomes from the point of view of the theory.
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to cope adequately with the problem of making the recessary deduction in
the fina! step of the second and third items... Again with the third item...it
is the next level of abstraction, that of a pronumeral as a variable, where
thinking of zero occurs so that the number system is consistent with itself.

Extended abstract responses. Responses in this category demonstrate an
ability to view a pronumeral as a variable and thus enable the final deduction

necessary in the second and third items to be made..." (op. cit., p69if)

At this point, a strong objection to Biggs and Collis' analysis must be raised. In
all cases they are assuming that the students are working with numbers as such, ie, that
there are no nonnumerical models guiding their judgement. If we accept, instead, the
possibility that the students could be thinking of the letters as naming segments of lines,
much of the analysis could be different: (i) in the third item, the crucial question would
be the possibility of using a numerical model, as "zero” cannot be represented as a
segment; (i) in the second item, the difficulty could be related to the practice—common
and, in fact, necessary in life—of not giving the same object (a line segment, in this
case) two names; (iii) in the first item, an "always" without calculations could well
mean the obvious fact that if you conjoin two segments of line, the total will always be
the same. In relation to (ii), even in the case of a numerical model being used, the
mathematical usefulness and acceptability of the possibility of two letters
representing the same number might play a crucial role, ie, the case is not considered
because the student does not know that it can be so. The possibility of this gap
highlights the fact that there is never any attempt-~in this section or elsewhere in the
chapter on mathematics—to relate the types of responses to schooling conditions, such
as the sequence of the topics taught and the characteristics of the teaching material
used>.

It could be argued that the students had been told that the letters stood for
numbers, but this is not sufficient to determine which model is used to guide the
manipulation of relations involving those numbers. From the text of the book, it is not
possible to know which—if any—indications the students tested gave of using
nonnumerical models, but the simple fact that this possibility is not mentioned or
discussed is indicative that the authors were probably unaware of the distinct
possibilities it would bring, '

5It is true that the book deals with "implications of SOLO for the teaching of
mathematics." Nevertheless, the definition of school mathematics adopted ("...a logical
system or structure of relationships that has as its base a sel of elements and a clearly
defined method of operating on them...") naturally excludes the two considerations we
have mentioned.
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In the same way in which Biggs and Collis pointed out that several variables
may interfere with the production of a response, and, thus, the stages theories are not a
good model for assessing the quality of the response, we must point out that the quality
of a response, in the sense of the SOLO Taxonomy, can only be evaluated from the
point of view of the mathematical framework within which the learner is operating, ie,
his or her mathematical conceptualisations. Strictly speaking, the failure to answer
correctly a test-item, analysed in the absence of a knowledge of the model in relation to
which the learner tried to solve it, can only mean that "the learner was not able to deal
with that test-item.” We must make clear, nevertheless, that our criticism is only
directed at the impossibility for the SOLO Taxonomy to elucidate, by itself, the
characteristics of the learner's mathematical ethos, and in particular, the model used as a
support in any specific problem solving situation.

At the same time, it is clear to us that our characterisation of algebraic thinking
is not capable of, nor aimed at, distinguishing responses in a manner similar to the
SOLO Taxonomy. Instead, it is aimed exactly at distinguishing between different
models used to deal with and produce algebraic knowledge. The first phrase of Biggs
and Collis (1982) is, "In this book, we are concentrating on 2 common learning
situation: one that involves the meaningful learning of existing knowledge, or reception
learning." It is precisely because one speaks of meaning, that it is necessary to
determine which is the conceptual framework in which this knowledge is supposed to
be inserted, and the central aim of this dissertation is to provide the means to to this
determination in the case of algebraic knowlédge.

The interpretation given by Biggs and Collis to the responses, depends on a
second assumption, namely that the mathematical context of the response rests defined
by a content, in this case, that composed by the algebraic expressions proposed—this
meaning precisely a combination of letters and arithmetical symbols—together with the
knowledge that is required to answer correctly the questions if they are treated
numerically. As this knowledge cannot be communicated to the solver, or the questions
would not be questions, we are left with the algebraic expressions as supposedly
defining the mathematical context of the questions in the view of the researchers. On
page 87 we read:

"The necessity 1o communicate parts of the siructure [mathematics] 1o
others gives rise to a formal symbolism that takes in both the elements and
the operations, The mathematical statement 4(a+b)=4a+4b may be used to
demonstrate the point. The elements involved in the statement are numbers

and wvariables; the operations to be carried out on the elements,
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multiplication and addition are clearly defined...and tt;e statement
itself indicates a link between two sections of the mathematical structure,
that concerned with addition and that concemed with multiplication.” (our

emphasis)

The possibility of the mathematical expression representing a statement about
areas is simply not considered.

THE CSMS ALGEBRA SURVEY

The objective of the CSMS project was to produce a survey of secondary
school mathematics, in a number of areas. The main results of the survey are repoﬁcd
in Hart (1984).

One of the areas of interest, in the CSMS survey is the understanding children
have of letters in mathematics. In Hart (op. cit.) the results are presented under the title
of "Algebra," but in Kiichemann (1978) they are described as an "investigation of
children's understanding of generalised arithmetic.”

In order to analyse the results of the testing, six categories were created,
describing different ways in which letters could be used in the context of the test-items;
those categories were based on earlier work by Collis. The six categories are (Hart, op.
cit., p104): ' — SR

(i) letter evaluated: "This category applies where the letter is assigned a
numerical value from the outset.”

(ii) leter ignored_:_ "Here the children ignore the letier, or at best
acknowledge its existence but without giving it a meaning.”

(iii) letter as object: "The letter is regarded as a shorthand for an object or
as an object in its own right.”

(iv) letter as specific unknown: Children regard a letter as a specific but
unknown number, and can operate upon it directly.”

(v) letter as generalised number: "The letter is seen as representing, or
at least being able to take, several values rather than just one."

(vi) letter as variable: "The letter is secen as representing a range of
unspecified values, and a systematic relationship is seen to exist between

two such sets of values."
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examine them in any detail. We will focus instead on the aims of the CSMS research on
algebra, and some aspects of its methodology.

First and of foremost importance, the study reports a link between the different
uses of a letter and Piaget's levels of intellectual development, but does not take into
consideration, at any time, the instruction received by those students on the topics
tested; Booth's follow-up study of the survey, which we will analyse a few paragraphs
ahead, shows that this is an aspect of crucial importance in relation to the results
collected by the survey. It also shows, however, a conception of knowledge and of
knowing well in line with the Piagetian tradition of the "little-lone-scientist.”

Second, the survey does not examine whether there was consistency within the
answers of single students, and thus, the validity of the association with developmental
levels is seriously jeopardised.

From a more general point of view, Belt (1987, 1989b) showed that the six
categories are not adequate to describe all the different situations that may arise in the
algebraic activity; also, in focusing the investigation on simple and immediate uses of
letters, the survey does not provide any insights into the processes by which the
different uses proposed are developed or interrelated.

As we have already said, Lesley Booth produced a follow-up study of the
algebra part of the CSMS survey; the results are reported in Booth (1984). As with the
CSMS survey, her study deliberately concentrated on the use of letters in "generalised
arithmetic." The aim of Booth's study was,

...to investigate the reasons underlying particular errors in generalised
arithmetic which the earlier CSMS {mathematics) project had shown to be
widely prevalent among 2nd to 4th year children in English secondary
schools, and to explore the effectiveness of short teaching modules designed

10 help children to correct or avoid these errors.” {op. cit., p1)

Two hypothesis are investigated: the dependence of errors on the interpretations
given to the letters, and on the use of procedures that are imported by the children from
the solution of arithmetical problems.

The main conclusions of the study can be thus summarised:

(i) there seems to be support to the view that the possibility of using letters in
different ways is related to a cognitive awareness;

(ii) part of the difficulties faced by the children result from the use of "informat”
methods, which are methods which are elicited by specific aspects of a problem, rather
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than general solution or manipulation procedures; Booth points out that it is highly
relevant that even after being taught formal methods, many children continue to use the
informal ones, and considers the possibility of interpreting this on the basis of Collis
interpretation of "concrete thinking," according to which the "child's thinking is
restricted to concrete-empirical experience so that the child tends to operate in terms of
the particular sitvation préscnted" (cf. Booth, op. cit., p89). She also points out that
children "do not look beyond the particular solution of immediate, concrete, problems,”
(ibid) but indicates that children benefited from teaching in overcoming this situation, in
that it assisted them "to move towards operating in the more formal systems"; this last
result seems to disagree with the idea that only when reaching the level of formal
operational thinking they would be able to think within formal systems.

(iii) the notational conventions of arithmetic might influence children's
construction of meaning for algebraic expressions. An important result, is that the
"acceptance of lack closure" (see, for example, Biggs and Collis, 1982) was shown to
be much less resistant to teaching than expected, leading Both to consider that "the
acceptance of lack of closure, and the view of letters as generalized rather than
particular number, may relate to different levels of conceptual difficulty, rather than be
manifestations of a single cognitive structure as suggested by the Collis-Piaget
formulation.” (op. cit., p91)

—- It seems, fromthe written report of the research, that by "informal methods"
Booth always means "informal numerical methods,” as in for example, dividing 525 by
5 by separating 525 in 500 and 25, dividing each part by 5, and adding the partial
results, rather than considering which is the model for quantities guiding this process (it
could be, for example, a whole-part model, or it could be a model based on properties
of the notational system). She suggests that further research is needed on the informal
methods used by children in generalised arithmetic, and of the five points she
highlights, two are more directly related to our research: "How do those informal
methods develop?,” and "Why do many children fail to assimilate the formal taught
procedures.”

Z.P. DIENES ON THE TEACHING OF ALGEBRA

In this section, we want to examine briefly Dienes’ conception of what should
be aimed at by the teaching of algebra, by summarising Chapter 4 of his Building up
mathematics (Dienes, 1960).

First, Dienes points out that the learning of arithmetic requires in fact the
learning of some "algebraic facts," and also that symbolization should follow the
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development of algebraic concepts, not precede it. He argues that "It is no earthly use to
put a variable [in the form of a letter] before a child until he has seen it vary." (op. cit.,
p76)

As it is well-known, Dienes conceives the construction of mathematical
knowledge by children as abstracting the mathematical structure from experience with a
number of mathematically similar situations (the Principle of Perceptual Variability), so
he proposes that from activities with tiles and scale-balances, the laws of algebra (eg;
A x B = B x A) be derived as abstractions.

Dienes also suggests that equations be set and solved with concrete material,
and then symbolised, and that in a similar way, formulas such as for the square of a
binomial, and procedures for factoring quadratic polynomials, be derived. The use of
concrete models, however, precludes the same approach with expressions involving
negative quantities, but Dienes justifies the correctness of the approach saying that,

"We are quite happy to tell children that X2+1=0 has no solutions, and yet
proceed happily to contradict ourselves a few years later, The same should
apply to any stage of learning in which only a resiricted field of numbers is
considered.” (op. cit., p10Q)

The use of concrete models in this manner, to justify and illustrate the rules and
procedures of algebra, has certainly become influential (see section Research.. .reported
at PME, below), but some authors ha%re considered that features of the concrete models
can stay too firmly tied to the mathematical construction (eg, Booth, 1987), and also
that children do not see the relationship between the concrete model used and the
mathematical concepts which they are supposed to illustrate, although the concrete
model was seen as "useful” by children (eg, Hart, 1988, 1989).

Summarising, we can say that Dienes view of the algebraic knowledge that is to
be achieved by the children, corresponds more to the content of algebra, ie, its laws
and rules of manipulation, and less to a mode of thinking according to which those
aspects are more meaningful; according to Dienes' approach, the means of providing
meaning to algebra is to relate its laws and procedures to a model that can be directly
and concretely manipulated, and not by appealing to properties of the algebraic
expressions as expressions of numerical relations; in many ways, Dienes' approach
amounts to providing an ontology for the objects being manipulated, ie, to say "what
they are," and from then derive the properties of operations on thems.

SThe notion of an ontology is discussed in detail in Chapter 3, on the historical
development of algebra.
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RESEARCH ON THE LEARNING OF ALGEBRA REPORTED AT PME?

Since its first conference in 1977, the PME group has been recognised as the
most important international research forum in the Psychology of Mathematical
Education. The interests of people belonging to PME range over a variety of themes,
from more theoretical issues (eg, Wachsmuth, 1981), to concept formation (eg, Meira,
1990), to the use of non-specific computer software to promote the learning of specific
aspects of mathematics (eg, Sutherland, 1989).

The interest in algebra and algebraic learning has varied over the years: 7 papers
in 1981, 1 paper in 1982, 16 in 1987, 6 in 1988, 5 in 1989, 14 in 1990, 13 in 19918

Those papers can be roughly divided into three main areas?: (A) difficulties in
algebra caused by the use of literal notation; (B) difficulties in algebra caused by an
insufficient understanding of arithmetic; (C) models for characterising the algebraic
activity. We will briefly examine those areas in turn.

{A) Difficulties in algebra caused by the use of literal notation

A common approach here is to propose test-items in algebra and to analyse the
distribution and types of errors. Pereira-Mendoza (1987) examines the way in which
students make incorrect generalisations of algorithms to deal with expressions in
arithmetic, and apply them to algebraic (literal) expressions; he distinguishes the
"arithmetic space" from the "algebraic space." Becker (1988) does a similar
investigation, but focusing on the role of the literal symbolism on the formation of
€ITOrS. _

A second approach is to investigate directly the characteristics of the algebraic
symbolism. Kirshner (1987 and 1990); in the first paper he examines the syntax of
algebraic symbolism from the point of view of the parsing of expressions, and in the
second paper he examines issues on the acquisition of algebraic language from the point
of view of a model for its syntax. Filloy (1987) also examines algebra from a linguistic
point of view, but in a broader perspective, relating the linguistic issues with the
tension between semantic and syntax, arguing, with Thorndike, that emphasis must be
put on practice with the syntax in order to free the individuals attention from the syntax

7The annual conferences of the International Group on the Psychology of Mathematical
Education. PME is a group within ICME, the International Conference on Mathematical
Education, which meets every four years.

Papers on functions were not included, unless they focused on algebraic aspects of
functions.

9Many papers, of course, examine more than one of those aspecis.
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and allow him to concentrate on other—less "automatic"—aspects of the problem he is
handling.

In Gallardo and Rojano (1987), a number of specific aspects of the use of literal
symbolism are examined, with almost total reference to "the unknown” in the context of
solving equations; the paper refers to the "didactic cut” that happens when the students
are requested to deal with equations in which the unknown appears on both sides, and
account for this difficulty on the basis of a refusal to "operate on the unknown."

(B) Difficulties in algebra cansed by an insufficient understanding of arithmetic

In the past five years, very few PME papers deal directly with this aspect of the
learning of algebra. Booker (1987) provides a brief review of the main issues examined
until then. Booth (1989) also provides a brief review, and examines the results of an
experimental study designed to investigate students' understanding of inverse
operations, association and commutativity, and relates those results with possible
consequences to the learning of algebra. Booth's study is based on students’ ability to
manipulate arithmetical expressions with varying degrees of corhplexity, and the use of
non-numerical models by the students is not examined; she argues for the teaching of
arithmetic to put more emphasis on the structural properties of numbers, which, in fact,
would amount to a greater degree of algebraisation of the teaching of arithmetic.

In the beginning of the 1980's, the interest in the transition between arithmetic
and algebra was more intense than today, with papers such as Kieran's ( 1981),
examining both the difficulties introduced in algebra by the undue transfer of concepts
and procedures from arithmetic, and the ability of some pre-algebra students to
understand intuitively some aspects of algebra, as the solution of simple linear
equations,

To some great extent, the main issues related to this theme were "exhausted,”
but failed to produce a deeper understanding of the learning of algebra, as many of the
students who had a good understanding of arithmetic also faced sharp difficulties with
algebra. Nevertheless, those studies informed teaching in a very useful way, pointing
out that merely "generalising” arithmetic was not sufficient to lead to the learning of
algebra, and let the field open to other investigations. '
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C risations of the al ic activi T
The papers under this heading are of three kinds.

First, there is a small group of papers where the algebraic activity is organised
around the uses of algebra. Bell (1987), discussing the basis for designing an algebra
curriculum, argues that such curriculum should be organised around different modes of
algebraic activity, of which he distinguishes four: generalising; forming, solving and
interpreting equations; functions and formul®; and, general number properties. He
opposes his proposal to the traditional organisation around different types of algebraic
manipulation, and to the organisation around the different uses of letters. Bell's model
is flexible and designed to provide students with a sense of purpose for algebra, but a
discussion of the mathematical nature of the algebraic knowledge is not provided. Lee
(1987), [Ursini] Legovich (1990) and Ursini (1991), examine algebra in the context of
generalisation. In all three cases, the usefulness—as perceived by the students—of
algebra, in expressing generality, is examined, and also how the use of algebra is often
replaced, by students, with other models, in dealing with the generality of, for
example, patterns. In her paper, Lee points out to four major conclusions:

"1. A majority of students do not appreciate the implicit generality of
algebraic statements involving variables: _

2. For most stadents, numerical instances of generalisation carry more
conviction than an algebraic demonstration of the generalisation.

3. Many students do no appreciate that a single numerical counterexample is
sufficient to disprove a hypothesised generalisation.

4. Students who can competently handle the forms and
procedures of algebra rarely turn spontaneously to algebra to
solve a problem even when other methods are more lengthy

and less sure.” (our emphasis)

There seem to be two possibilities, here. First, that the students did not consider
the possibility of modelling those patterns in numbers, and for this reason refused to
use algebra to manipulate the—non-numerical—generality they perceived. Second, that
precisely because the generality perceived by the students was not an arithmo-algebraic
one, it was not visible in the algebraic statements, as there is an implicit shift in the
objects in the process of modelling a situation algebraically. In Lee, we find some of
the attempts to manipulate the generality of a pattern directly, through the manipulation
of the geometric configurations that generated it.
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—— In Friedlander et al. (1989), "visual” and "numerical” forms of justifying the
solution of "algebraic” problems are examined.

In second group of papers, the algebraic activity is examined by organising it
around the content of algebra: equations, equation solving, variables, expressions
(Kieran, 1988 and 1991; Linchevsky and Vinner, 1950; Rubio, 1990), and specific
difficulties examined.

In a number of papers in this group, the use of non-algebraic models to provide
"meaning” for algebra is advocated (Cortez and Vergnaud, 1990, scale-balance;
Garangon et al., 1990, computer-aided arithmetic model; Filloy, 1991, scale-balance
and areas) or the procedures that can be generated through such support models
examined (Carraher and Schliemann, 1987, scale-balance used in a professional
context; Sutherland, 1989, Logo; Rojano and Sutherland, 1991, spreadsheet). Only
Booth (1987), however, examines the effect of using such models in the
conceptualisation of the algebraic activity that is produced by the students; she points
out that ", ,.careful thought needs to be given to the kind of [concrete] model used, to
the ways in which the model is related to the formal procedure, and to the limitations
and misleading notions that might be inherent in the particular models adopted." She
does not consider, however, the possibility of mistakes observed in students of algebra
being due to the "background," ie, not explicit, use of such models!0.

The third, and last, group of papers, is quite limited in size, and varied in
approaches. It is composed by attempts, more or less comprehensive, to characterise
the algebraic activity in itself, ie, to characterise the mode of thinking that is peculiar to
it, and not through its contentll,

Sfard (1987, 1989), develops the distinction between the operational and
structural aspects of mathematical—and in particular, algebraic—notions; to the
former, she associates processes, and to the latter, static "entities." Sfard's mode! is
intended to characterise the passage from simple to complex levels of the algebraic
activity, based on the mechanism of "reification” of processes into "compact static
wholes." In both papers she analyses the learning of the concept of function from the
point of view of her framework, concludes that "the fully fledged structural conception
of function is rather rare in high-school students,” and draws possible implications for

10Rosamund Sutherland, of the Institute of Education, University of London, is at
presenl carrying out an investigation aimed at eliciting the models used by pupils who
solve "algebraic verbal problems using a spreadsheet

HThe model proposed in Harper (1981), and its deveiopmems, will be analysed
separately, in a later section.
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the teaching of mathematics. Sfard's mode] will be more closely examined a few
paragraphs ahead.

Arzarello (1991), prefers the distinction between procedural and relational, but
uses it as a "double-polarity" which "lives in every solutton of an algebraic problem."”
Arzarello briefly points out to the use of "[the] subject's actions, the very process of
their constructions and generations, every other extramathematical information about
them," to "express the meaning of mathematical objects.” Arzarello says:

"a. The discovery-construction of an algebraic rule is not a trivial process of
generalization from particular to general, but it is stirred by the strained
_connections between the two polarities. Typically, the dialectic between the

two polarities marks the birth of algebraic work."

indicating that his model intends to characterise a mode of thinking first, and then
examine the nature of the objects generated, from the point of view of the requirements
of this mode of thinking. |

Sfard's model is strictly within the structuralist tradition, and inherits its
difficulties; for example, it fails to provide a reason for the passage from procedure to
structure—even in the case of functions, which she examines in some detail.
Arzarello’s model, on the other hand, correctly points out to the fact that the objects of

algebra are generated in the process of dealing with situations or problems with ™

different intentions, ie, aiming at different aspects of the model.

None of the two models, however, provide any indication of which is the
intention that drives the production of an algebraic knowledge or of an algebraic mode
of thinking.

The characterisation of algebraic thinking that is the object of this dissertation,
was first presented—in provisional form—in Lins (1990), a PME paper which belong
to the small group of papers we have just examined.

LEARNING AND THE HISTORICAL DEVELOPMENT OF ALGEBRA

In this section we will examine three approaches to this question, all of which
have in common the fact that they accept, as a principle or as a hypothesis to be
inveétigatcd, the notion that the learning of algebra by individuals, closely recapitulates
the historical development of the subject; it is usual to refer to this hypothesis by saying
that "ontogenesis-—the development of the individual-—parallels philogenesis—the
development within the history of the human race." Garcia and Piaget prefer
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"psychogenesis” to "ontogenesis,” and this choice, far from casual, indicates an
emphasis on the "psychological,” in the "internal," side of the individual, which is in
agreement with Piaget's understanding of knowledge, while with "ontogenesis” the
~ many possibilities of the "being" remain open. Similarly, "philogenesis” may be
replaced by "sociogenesis,” but it also implies a sort of judgement of the crucial aspect
in "philo." We will adopt "ontogenesis" and "sociogenesis,” in agreement with our
position, made clear in the previous chapter, that the social factor is a necessary and
determining feature of the human endeavour.

n Harper an uses of letters in algeb

The essence of Harper's approach to this question is the following:

"It is generally accepted by historians of mathematics that algebra has passed
through three important stages: rethorical, syncopated, and symbolic.”
(Harper, 1987, p77)

and from that point of departure, ie, the classification of the uses of letters in algebra in

those three categories—which we will subsequently examine—1o analyse the responses

of children of various ages to test-items especially devised.
We will first examine the historical aspect12.

The three stages to which Harper refers, were in fact proposed by Nesselmann,
in his Die Algebra der Griechen, published in 1842. Heath (1964, p49) points out that
Nesselmann speaks of the three stages "In order to show in what place, in respect of
systems of algebraic notation, Diophantus stands..."” (our emphasis) |

The three stages are thus characterised:

"(1) The first stage Nesselmann represents by the name Rethorical Algebra
or 'reckoning by complete words," The characteristic of this stage is the
absolute want of all symbols, the whole of the calculation being carried on
by means of complete words, and forming in fact continuous prose...(2) The
second stage Nessclmann proposes to call the Syncopated Algebra. This
stage is essentially rethorical, and therein like the first in its treatment of the

questions; but we now find for often-recurring operations and quantities,

12We prefer 10 do it here rather than to refer the reader to the chapter on the historical
development of algebra, both because there are specific issues which would be lost in a
more general discussion, and because this discussion is not of special interest in the
—context of our historical investigation,
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certain abbreviational symbols...(3) To the thisd stage Nesselmaﬁ;éivcs the
name Symbolic Algebra, which uses a complete sysiem of notation by
signs having no visible connexion with the words or things which they

represent..."

Most of the agreement to which Harper refers, stops here. Heath, while using
Nesselmann's classification, gives his own interpretation, saying that Vieta belongs to
the third stage, while Klein (1968, p146) informs us that "according to Nesselmann
even Vieta belongs to the stage of syncopated algebra," and points out that
Rodet, in 1881, "opposed this tripartite division with the thesis that only two types of
algebra should be recognized, namely 'algébre des abbréviations et des données
numériques’ and ‘T'algébre symbolique." M. Kline (1990) remarks, almost casually,
that, "Because he does use some symbolism, Diophantus' algebra has been called
syncopated...", and this is the only mention to the three stages, and van der Waerden
(1985) ignores altogether Nesselmann's classification. Moreover, Whiteside (1962,
p197) says that,

"The development of the concept of variable is very closely tied up with the
notation used to express it...But the variable is something more than its
mere symbolic denotation and Nesselmann's classification is perhaps a little

too narrow and rigid, and certairily arbitrary."
Harper makes a claim which is historically inaccurate. He claims that,

"The use of the letter as a representation of a 'given’ quantity (Vieta called
his letters 'species”) -introd uces a new numerical concept into
mathematics—the 'algebraic number concept’ (Harper, 1979) or 'symbolic
number concept' (Klein, 1968)" (our emphasis)!3

It is true that Klein uses the term "symbolic number” to denote the conception
that underlies Vieta's species, but he also says that,

“The new [symbolic] ‘number' concept...already controlled, although not
explicitly, the algebraic expositions and investigations of Stifel, Cardano,
Tartaglia..." (Klein, 1968, p178)

13 There is in fact an improper use of the term "algebraic number,"” a notion which only
appears when Legendre conjectures that n is not a root of a polynomial with rational
coefficients, and a term very clearly understood in mathematics.
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an aspect that we will examine in more detail on Chapter X. Vieta's species are a
remarkably useful condensation of the "symbolic number,"” and not that which
introduces it.

This distinction is important because it is precisely on the basis of its lacking
that Harper uses Nesselmann's classification to analyse pupils' work, as he
characterises the solutions according to how they are presented, rather than how they
are produced.

One of the problems proposed by Harper, and in which responses he bases
most of his argument, is the following:

"If you are given the sum and the difference of any two numbers show that
you can always find out what the numbers are. Make your answer as general

as possible.”
and in Harper (1981) we find what each of the three types of solution would be:

"(i) Rethorical: The pupil typically writes down litile except perhaps two
numbers 1o represent a sum and a difference, and the 'solution’; *You add the
sum and the difference together and divide by two. That gives you one
“number. Take the differénce from the sum and divide by two and that gives
you the other number.'
(iiy Diephantine: The pupil chooses a particular sum and difference, wriles
down two equations containing two unknowns, and solves them. He (she)
often suggests, verbally or in writing, that the same method can be used
whatever the nﬁmbers chosen for the sum and the difference.
(iii) Vietan: The puopil writes down two simultancous equations involving
two unknowns and a letter for each of the sum and the difference. These are

solved to produce, for example: x = 4 ; b ,y = a 2' b

The data obtained indicates a clear swing from "Rethorical” to "Diophantine”
and then to "Vietan" responses, from Year 1 (11y9m, average) to A-level (17y3m),
which Harper (1981) sees as, "an age-related transition Rethorical — Diophantine —
Vietan.” He considers the possibility of an influence of teaching, but counters that
possibility by arguing that,

"(i) pupils in the school were not encouraged to provide rethorical type

responses in any of their work

A Swdy of Previous Research ’ - 39



(ii) pupils were introduced to "letters for unknowns' and were expected to use
these in problem solving activities during Year } and onwards

(iii) pupils were using letters as "givens' in the context of functions, and to
make generalisations as carly as Year 2

(iv) simultaneous equations were introduced in Year 2." (Harper, 1987)

We think that the reason why the students did not use the techniques they had
been taught, may be related to the fact that the problem itself is, probably, unusual for
ihem, as it is not asking them to solve a problem, but rather to show that it can always
be done. The subtle, but crucial, difference, is similar to that which exists between the
problems in Diophantus' Arithmetica, and in Euclid's Data, in which only the
possibility of a construction is required to be shownl4.

As we said before, Harper's categorisation of the answers focus strongly on the
way in which the solutions are presented, and does not examine in detail how they are
produced. In relation to this, we think that a few observations are relevant.

First, if a mathematician gives the "rethorical" response in reply to the question,
classifying it as "rethorical,” could not imply a cognitive impossibility on the part of the
solver. But if this is the case, it implies that categorising children's responses, and
considering a possible correlation between the types of responses and levels of
‘cognitive development, depends precisely on the special assumption that the choice of a
specific approach means something different in children and in adults, and, as a
consequence, history could not inform Harper's model, unless he is prepared to
assume that Diophantus' was at a lower intellectual level —in a developmental sense —
than Vieta.
| Second, as we have pointed out, in Bombelli one finds a symbolical conception
of number, but not the adoption of generic coefficients; as a consequence, historically
informed only, there is no way to characterise the ';Diophantine" solutions as indicating
a lack of such symbolic understanding of number. What characterises the "symbolic
number" of Klein, is not a notational form per se, but the way in which number is
understood, as intending the "things" which are measured by it, or, instead,
symbolically, as meaningful only in relation to the—algebraic—system in which it is
defined, ie, in relation to the properties of the operations of that system.

The difficulties in Harper's model suggest two areas in which extreme care has
to be taken, if we are to elicit the informative value—if there is any—of history to
rescarch into cognition in mathematics: (i) the problems used have to aim deeper in the

14We will examine this difference in Chapter 3.
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students' knowledge than the presentation of the solutions; and, (ii) history cannot be
arbitrarily dissected and reassembled into a lifeless, linear, progression from the
particular to the general, from the simple to the complex, from the primitive to the
sophisticated. '

Anna Sfard an rocess of

Anna Sfard proposes a model of concept formation in mathematics, a model
which is based on the distinction between two ways in which mathematical objects can
be perceived: as a process—the operational aspect——or as product—the structural
aspect. She examines the concept of function from this point of view: operationally,
functions are "certain computational procedures"; structurally, functions are "aggregates
of ordered pairs." (Sfard, 1989)

Central in Sfard's model is the thesis that the operational aspect precedes the
structural aspect; on one hand, she argues that the latter is much more "abstract” than
the former, and that, |

“...in order to Speak about mathematical objects one must to be able to
focus on input-output relations ignoring the intervening transformation.
Thus, to expect that the student would understand a structural definition
without some previous éxpcrience with the underlying processes seems as
unreasonable as hoping that he or she would comprehend the
two-dimensional scheme of a cube without being acquainted with its
"real-life” three-dimensional model. In the classroom, therefore, the

aperational approach should precede the structural.” (Sfard, 1989)

while at the same time she says that,

"...a close look at the history of such notions as number or function will
show that they had been conceived operationally long before their structural

definitions and representations were invented.” (Sfard, 1991)

There is a difficulty with Sfard’s model. One can reasonably say, thatitis nota
good idea to introduce the notion of functions as elements of an algebraic system—for
example, the additive group of polynomials in a formal variable, and with coefficients
in Q—before the learner has had plenty of opportunit'}ies to add polynomials, to deal
with their additive inverses, and to examine the properties of those polynomials in
relation to that operation. But it is a totally different matter to say that one has to
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"substitute a lot of values for x and calculate the result,” in order to be able to
understand the algebraic system described above. In the former, one has to see
polynomials as formal expressions, in the latter as formule, and, in fact, given the
similarity of the notation—a situation which has its advantages—the two notions are
conflicting. The difficulty, then, consists in defining exactly what operational means, if
it means "using to calculate,” or if it means "doing calculations on," or something else.

Similarly, Sfard never defines "structural,” let alone "structure,” directly. As a
consequence, structural, which is a word with a rich—to say the least—net of -
meanings around it, has to be re-understood on the basis of her use of it.

Sfard says that,

"Of the two kinds of mathematica! definitions, the structural descriptions
seem to be more abstract. Indeed, in order to speak about mathematical
objects, we must be able to deal with the products of some process without
bothering about the processes themselves. In the case of functions and sets
(in their modem sense) we are even compelled to ignore the very question of
their constru(_:tivity. It seems, therefore, that the structural approach should
be regarded as the more advanced stage of concept development,” (Sfard,
1991, p10)

- The word "structural” appears twice: in "structural description” and in
"structural approach. ..to concept development.”

In the former, we can take it as meaning, for example, "functions can be
described in different ways, one of them is as a set of ordered pairs, which we will call
structural.” But why should we call that form of description "structural,” instead of
"static"? Does it reveal the structure of a function? Sfard also offers (1991) a structural
definition of "circle": "The locus of all points equidistant from a given point," while an
operational definition would be "[a curve obtained by] rotating a compass around a
fixed point.” But if I define “"circle” as "x2+y2=r2," without adding "the set of points
such that..." or "plotting the set of points such that...", it seems that the distinction
does not work.

In the latter of the two uses of "structural,” the more likely meaning is that
"concept development will be seen as the progressive unveiling of the structure of the
‘concepts in question.” From this point of view, history and learning should necessarily
follow a similar path, precisely because in both cases human beings are unveiling the
same structure, ie, along history Man learns this structure. But this can only be true if
the structure is a "property” of the concepts, and moreover, if this structure is
"deposited” somewhere. The second of those conditions we have addressed in Chapter
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115, The first condition is a key one in Sfard's model, as she postulates that without
operational understanding—as indicated by a given definition—structural
understanding is not possible. But this means only that given that a structural
understanding is a form of abstraction from an operational understanding—a form of
abstraction that Sfard calls reification, the transformation into "object"—it is not
possible to have structural understanding before operational understanding. In other
words, the vicious circle is forced by the attempt to prove the precedence of operational
over structural, when structural is defined precisely as a transformation of operational.
If instead, we consider that there are plenty of situations from which to
construct a notion of function that does not depend ar all on the notion of
“calculation"—for example, water from a tap filling a tank, pupils being paired in
preparation to a game, the length of the shade of a stick vertically set during various
hours of the day, or even using throws of dice—it becomes clear that the precedence of
operational over structural cannot be established in general; a table is no less a way of
"calculating” the value of a function for a given "input” than formula. Sfard herself
accepts that "Geometric ideas. ..can probably be conceived structurally even before full
awareness of the alternative procedural descriptions has been achieved." (Sfard, 1991,

pl0)

Sfard's approach to historical research is at least incomplete; saying that the
"transition from computational operations to abstract objects is a long and inherently
difficult process," (Sfard, 1991) does not help, unless this difficulty is justified. The
historical example of the distinct speed of developments in algebra and in geometry
seems to suggest that such explanation is still some way from being reached, and a
number of historians do not hesitate in calling it "a paradox.”

The question that has to be asked in relation to history, is about which were the
conditions in which a given conception was "natural," and also which aspects of those
conditions could make the development of another, given, conception—the modern
one, for example—impossible. It is precisely from this point of view that history can
inform education, by revealing ways in which mathematical knowledge is biased and
"organic" within a culture. As we had pointed out in relation to Harper's attempt at
linking history and learning, Sfard's model is based in a "progressivist" reading of
history, which means that she looks at history as some sort of struggle to unearth true
knowledge from the depths of...some sort of "structure” living in a Platonic world of
ideas. Jacob Klein's (Klein, 1968) analysis of the conditions in which Vieta's symbolic
invention was produced, clearly indicates that there is a slrang shift in the intention that
animated Diophantus’ and Vieta's concept of number, and that the mathematics in the

150n the section "On the nature of mathematics.”
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again led to stress that the "progressivist” reading of history is, in fact, a projection of
the modern understanding, conceptualisation, into the historical texts, and its "result” is
not an understanding of history, but the reconstruction of history according to a
pre-fixed hierarchy of contents and concepts. In Chapter X we provide some of the
elements necessary to redress the relations between history and leaming,.

The difficulties in Sfard's model are due to two factors.

First, it fails to appreciate that the obstacles identified in the transition from an
operational 1o a structural conception, implicitly assume the previous existence of the
former; as we saw in the case of function, it is possible—precisely because we,
educators, already know the "ordered pairs" definition—to consider situations where
the “ordered pairs" conception is achieved without going through the operational one
as Sfard defined it, ie, it is possible to present the "much more abstract” form directly.

Second, it fails to consider that what we find in history are mathematical
conceptual systems which belong "organically” the whole of each culture; as one
changes, so does the other. To say that an "object” is more abstract than another one is,
a priori, a statement that depends on a given formalisation; unless Sfard—or, for that
matter, anyone—is able to prove that for a given mathematical concept, or “object” A,
there can be no interpretation in which A does not depend on the "reification" of
another "object” B, any attempt at postulating the precedence of B over A, purely on
the basis of one possible interpretation, is bound to meet the vicious circle we have
indicated to exist in Sfard's model.

Itis a good point in Sfard's work, that she prefers dualities to dichotomies, but
the route she actually takes in the three papers we have examined, leads in fact to
hierarchies. It is very good that she says,

"When analyzing the process of learning mathematics, one should be aware
of the crucial role played by such epistemological issues as students’
implicit beliefs about the nature of mathematics on the whole, and of

mathemalical entities in particular" (Sfard, 1989)

but similar observations apply to the researchers’ beliefs about the nature of history and
about the nature of learning.
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Rolan i n Piaget

In a book published for the first time in 1982, Psicogénesis e Historia de la
Ciencia (Garcia and Piaget, 1984)16, Rolando Garcia, a physicist and eplstemologlst
and Jean Piaget, a psychologist and epistemologist, approach the question of which are
the basic mechanisms involved in the production of knowledge in mathematics and in
physics. They look into two directions, into history and into stages of cognitive
development. They say about the objective of their investigation, that,

"...it is not, in any way, to put into correspondence the succession in
history with those revealed by the psychogenetic analysis, by highlighting -
contents. It is, on the contrary, an entirely different objective: to show that
the mechanism of transition between historical periods are analogous to the

mechanisms of transition between psychogenetic stages." (op. cit., p33)

They claim that two of those mechanisms can be identified both in history and
in psychogenesis. The first is

"...a general process that characterises any cognitive progress: every time
there is a breakthrough, that which is surpassed is in some way mlegratcd

into that which surpasses it..." (ibid)

The "nature” of what is surpassed or surpasses is not clarified, and the word
used in Spanish for "breakthrough,” and “surpass,” come from the same root,
"rebasar,"” which means "to go beyond"; this means that, from the point of view of this
mechanism, no hierarchies are established, but it is stated that the "initial configuration”
plays a key role in the process of producing knowledge, and also that it is, in fact, an
essential element in this process. |

The second mechanism is described by them as the process which produces a
succession of three stages: intra-objectal, the analysis of the objects, inter-objectal, the
study of relations and transformations involving those objects, and trans-objectal, the
construction of structures. According to Garcia and Piaget, reaching stage j is a
necessary condition for reaching stage j+1, but, we must add, it is not a sufficient
condition; we will return to those two points later.

16 A5 far as we could find, there is no English translation of the book, and we will quote
cur own translations of the original Spanish. ’
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In relation to algebra, which study is on Chapter V of their book, Garcia and
Piaget make a clear-cut choice: it is only with Vieta's symbolic invention that one can
speak of the beginning of algebra. They claim to have found the historical support in
Jacob Klein's Greek Mathematical Thought and the Origins of Algebra (Klein, 1968), a
work to which we will many times return on Chapter X of this dissertation. The key
notion that they borrow from Klein, is the distinction between the conceptualisations of
number in Diophantus and in Vieta, that being a symbolic number in the latter.

The "object” that réplaces the general place-holder in the three stages described
two paragraphs above, is "operation"; so, in algebra, they study the succession from
intra-operational, through inter-operational, to trans-operational. The text where those
three stages are characterised, is quite obscure, so we present it in full:

"The intra-operational stage is characlerised by intra-operational relations
that present themselves as detachable forms, without transformations from
one to another which imply the existence of invariants, and without
composition among them that conduce to the definition of structures...The
inter-operational stage is characterised by correspondence and transformations
between the detachable forms of the previous stage, with the invariants
which such wansformations require...The trans-operational stage is
characterised by the construction of structures which internal relations

correspond to the inter-operational transformations.” (op. cit., p134)

Some of the examples they provide to characterise each of the stages are: (i)
Cardano and the algebraists of the Renaissance are in the intra-operational stage, as
they work with solutions for various and isolated problems; (ii) Lagrange is at the
inter-operational stage, as he examines the nature of the methods employed
successfully to solve cubic and quartic polynomial equations; and, (iii) Galois "opens”
the trans-operational stage. Other examples are analysed, such as Gauss's work with
quadractic forms.

On the side of psychogenesis, Garcia and Piaget briefly examine the
development of the notion of conservation of equality in relation to the action of adding
to both sides of the equality, and conclude that the mechanisms observed there are the
same they explored in relation to history.

It is not our intention to go beyond this short account, which, nevertheless,

provides elements for a reflection on their model, and the reader is referred to the book
for a much fuller account of the authors' points of view.
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It is clear that the model is strongly characterised by the assumption of the
necessity of the succession intra, inter, trans;, Garcia and Piaget attempt to solve the
difficulty of accounting for the necessary order of succession by saying that,

"We could also come to sustain that the [intra, inter, trans] successions
plunge their roots in biology: they [the successions] are that which justify
the dream of an integral constructionism, that will link, through all the
necessary intermediate steps, the biological structures which are at the point
of departure and the logico-mathematical creations which are in the point of

arrival.” (op. cit., p172)

The unavailability of such link with biology, which would establish the
necessity of the succession, leaves open other possibilities to investigate. One of them
is to consider that in history, for example in the 18th century, the notion of structure as
we have now had not been established, and that it may be possible to construct new
mathematical objects from the initial construction of a general structure within which
those new objects can be given meaning!’.

A difficulty in examining those successions in history, is that one has a double
possibility: (i) to examine history "searching" for such successions, ie, choosing an
initial object and attempting to trace the corresponding succession; or, (ii) to examine
each mathematical culture in order to understand the developments within that culture in
terms of its own possibilities, ie, from the point of view of its own conccptlon If
approach (ii) is adopted, as it is by Garcia and Piaget, than one is left with the task of
explaining why the succession did not take less time to be completed, and also why it
happens for some initial objects but not for others; but this can only be understood by
using approach (i). As we saw with Sfard and with Harper, the “progressivist" reading
of history presents other difficulties.

To give more flcxibility to the model, Garcia and Piaget propose that within
each stage, there are sub-stages, which follow the same sequence: intra, inter, trans.
From this perspective, they identify in the development of the Theory of Categories,
three sub-stages, trans-intra, trans-inter, and trans-trans. Because the trans stage is
"stronger" than the other two, there seems to be no difficulty here, but can we think of
intra-intra, intra-inter, and intra-trans sub-stages? Would it not be true that in this case
the characterisation of the stages cannot be directly applied, or we would meet a
contradiction, namely that we reach the last stage in the course of completing the first?

17For example, to define negative numbers directly as additive algebraic inverses of
positive numbers, and not as "debts,” or as directed numbers in the sense of using the
number line to define them. On the conclusions to Chapter 3 we examine this possibility
in some more detail. -
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The authors emphasise the "dialectic" character of their model, but we think the
inflexibility of the model creates, at this particular point, for example, an unnecessary
conflict.

Another difficulty is this. Although Garcia and Piaget aim at a general
succession, one that is not content dependent!8, one would have to explain why the
constitution of the notion of "structure” in one branch of mathematics does not
immediately sets the paradigm which is followed by other branches; it is true that one
hundred years after Galois, the notion of structure was firmly in place within
mathematics, but mathematics itself was not reduced to the study of abstract structures,
although it may be seen as the abstract study of structures; the subtle distinction
indicates that the tension between the "initial objects” and the "final structure” has not
been resolved, and we think that, in fact, it cannot be totally resolved if mathematics is
to remain meaningful within a culture!?. In relation to psychogenesis, the phenomenon
is more complex to study, and Piaget had to take refuge in the notion of décalage, in
order to explain the failure of the model to account for differences in cognitive
developments where they should not exist according to it (see, in this chapter, the
sub-section on the SOLO Taxonomy). '

Underlying Garcia and Piaget's model, we have the notions of assimilation and
of accommodation (op. cit., p246ff), which give to the model its constructivist
character, and leave open the possibility of explaining the interaction between the
individual and the social context. They also say that,

"...we must differentiate, on the one hand, the mechanisms of acquisition of
knowledge that an individual has at his disposition, and on the other, the
form under which it is presented the object which will be assimilated by that
individual. Society modifies the latter, but not the former." (op. cit., p245)

Garcia and Piaget's position amounts to say that the internal character of the
cognitive apparatus of individuals is that which keeps knowledge on the tracks, so to
speak, of the successions; another possibility to consider, would be that culture is
precisely that which focus the enormous power of our cognitive apparatus in one
direction or the other, but they reject this possibility:

18¢f Garcia and Piaget (op. cit., p33), quoted at the beginning of this subsection.

19Not only because it is through this tension thai mathematical modelling becomes
possible, but also because it allows mathematics to retain an unified character that does
not -depend on strong reductions such as a set-theoretical foundational program.
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"That the attention of the subject be direcied to certain objects (or situat_i(—)]ls)
and not to others; that the objects be situated in certain contexts and not in
others; that the actions on the objects be directed in a certain way and not in
others: all this is strongly influenced by the social and cultural environment
(or by that which we call the social paradigm). But all those conditions do
not modify the mechanisms that such a particular biological species—
human beings-—needs to acquire a knowledge of those objects, in given
contexis, with all the particular significations, socially determined, that have
been assigned 1o them.” (op. cit., p245)

As pointed out by Collis, it remains to be proved that those "ultimate”
mechanisms can be directly examined, a possibility on which the correctness of Garcia
and Piaget's model depends. It is important to emphasise that, as we saw in the first
paragraphs of this this sub-section, the succession which they present is introduced as
the result of a process which is never discussed directly: we know about it only through
its result, the succession. |

SOVIET RESEARCH ON THE TEACHING OF ALGEBRA

If not for anything else, Soviet research in the field can be immediately
distinguished from its "Western" counterpart by its explicit interest in the teaChihg of
algebra at the lower grades of elementary school. There is at once a conflict between
such approach and the canons of Piagetian and other stage-theories of intellectual
development, in particular in relation to the belief that "algebra™ requires "formal
operational thinking," an(i, thus, it cannot—or it should not—be taught to children
younger than 13 or 14 years-old. It is very likely, that Soviet research could proceed
with its investigations precisely for its isolation from Western research, although it is
true that Professor Davydov himself faced opposition, from teachers, to the
implementation of his teaching programme??. There are in general very few sources
available on Soviet research in education, and in particular on the teaching of algebra2!,
We will rely on a paper by Freudenthal, and on an English translation of a paper by
Davydov; that the paper by Freudenthal was published in 1974, but almost no reference
to Soviet research is made by Western researchers on the subject, is at the same time
sad and remarkable, and it is a strong indication of how difficult it can be to absorb that
which contradicts our deep beliefs, even if scientifically supported.

20personal communication from Dr M. Wolters, from the Dept. for Developmental
Psychology, University of Utrecht, The Netherlands.

A number of papers have been translated into Dutch and German, but very few into
other languages.
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A paper by V.V. Davydov

We will examine now, the paper An experiment in introducing elements of
algebra in elementary School, by V.V. Davydov. It was first published in the
Sovetskaia pedagogika, in 1962, and later translated into English (Davydov, 1962).

The paper is divided in two parts. In the first, Davydov presents the rationale
for the pedagogical approach adopted, and in the second he describes briefly the
resulting teaching programme.

As Davydov sees it, the most important reason for introducing elements of
algebra in the first grades of elementary school, is the need to provide a scientific, as
opposed to a practical, mathematical education. But this has to be understood correctly,
as in fact he does not mean, by scientific, an education that is "theoretical" in the sense
of its links with "reality” being severed. On the contrary, he believes that a teaching
programime to achieve such scientific education, must meet three requirements:

"1) To overcome the existing gap between the conlent of mathematics in
elementary and secondary schools22; 2) to provide a system of knowledge of
the chief laws of quantitative relationships in the objective world; the
properties of numbers as a special form of expressing
quantity must become a special .but not the main section .of
the program; 3) to cultivate in the pupils mathematical thinking
methods, and not calculating habits; this involves building a sysiem of
problems which is based on a deeper study of the sphere of dependencies of
real magnitudes (the connections of mathematics with physics, chemistry,
biclogy, and other sciences dealing with specific magnitudes)...” (op. cit.,

p30)23 (our emphasis)

The scientific education proposed by Davydov, is one in which the systematic
examination of the mathematical material support the development of the mathematical
technique and its applications. In relation to algebra, the basis of this scientific
mathematical education is to be found in quantitative relationships24, which, Davydov
says, "[as] numerous observations made by psychologists and educators...[indicate,]

228uch gap exists in the Soviet school system and it certainly still exists in most Western
school systems,

3There is a fourth point, related to the simplification of calculation, but in view of the
availability of electronic calculators and computers, it tends to become completely
irrelevant.

4Quantitative relationships, as used by Davydov, are those implied in a whole-part
model.
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arise in children long before they acquire a knowledge of numbers and methods of
operating with them."” (ibid.). Here lies the strength of Davydov's approach: on the one
hand, the introduction of algebra is not seen as a "generalisation” of the
arithmetico-numerical knowledge, and, thus, it does not face the problems identified by
so many researchers in the transition between arithmetic and algebra; on the other hand,
on the basis of those first algebraic elements, the construction of a number system is
much more solid, as it is not done on the basis of a collection of procedures and ad hoc
Justifications, but on the basis of a mode of thinking. Moreover, Davydov observes that
the tendency to call those quantitative conceptions "pre-mathematical,"” is derived from
an undue—according to Davydov—association between "an object's quantitative
characterization with a number":

"And it sometimes happens that the depth of these allegedly
'pre-mathematical formations' is more imporiant for the development of the
child's own mathematical thinking than knowledge of the fine points of
calculating techniques and the ability to find purely numerical dependencies.”
(ibid)

We will now present a summary of Davydov's programme for the first half of
the first year of elementary school; in Soviet Union, at that time, pupils entered
elementary-school at the age of seven.

emg I, Comparison of magni
1. Operations involving practical equaling-out and maiching of things by
length, volume, weight, composition, eic;
a) selecting the 'same article’ (a sample is given) according to a
given paramelter from the set;
b) making the 'same article' (a sample is given) according to a

given parameter.

2. Comparing things according to given parameters and recording the
result of comparison in letter symbols:
a) actual comparison of things...
b) recording the results
° first only by the symbols >, =, <, without designating
the things
¢ then, recording the things compared by symbols and

drawings
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° finally, by symbols and letters: A=B, A>B, A<B,
solving problems of the type ‘compare those things
by...and write down the result as a formula.'
¢) deriving by a formui:; the relationships of eguality and
inequality: 'If A=B then B=A,; if A>B the B<A," efc..

1. Disturbance of equality if one of its elements increases or diminishes.
A=B - A+e>B [eic.]

2, Preserving of equality by a corresponding ‘balancing-out.'
A=B (> A+e>B) —» A+e=B+e [cic.)

3. Solving problems in which these relationships appear

Theme 111, Reduction 1o Equality

1. A<B — A+te=B [or] A=B-¢...('¢'is equal to the difference between

Aand B) [etc.]
2. A+e=B — A<B [elic.]

3. Solving relevant problems [two baskets of apples, with A and B
apples, and A is more than B, eic.]}

Th IV dencies B n Elements of Equali

A+e=B Ac=B
A<B (bye) A>B (bye)
A=Be¢ A=B+c
e=B-A e=A-B

On the paper a more detailed description of the teaching process is provided.

On the second half of the first year, numbers are introduced as measure—~~"the
relationship of the magnitude under examination to that accepted as the unit of
measure”—and the arithmetical operations treated on the basis of the preceding
development: '

Th VI, Addiction an ion of number ing in i
lity) in in %!

3<7

3(+x)=7 [sic]

x=(7-3} [etc.]
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Multiplication and division are also understood in relation to the "formulas."

The paper's content does not allow us to have any detailed insight into the exact
results of the experiment, but, overall, the indication is that they were positive?s, A few
comments, however, are possible,

First, there is the distinctive intention of founding the learning of arithmetic on a
more general framework, in particular the characterisation of pairs of inverse operations
in relation to the equality relationship, which is mathematically sound, as the "undo"
character is more closely related to the idea of inverse elements, and not to inverse
operations. Second, by presenting the notation before the formal introduction of
numbers, the problem of "if it is any number, why not choose one and use it?", but
also, and of immense significance, the idea of "different uses of letters" simply does
not arise: there are, instead, different uses of that algebraic knowledge, an idea which is
in agreement with Bell's conception of a curricutum for algebra (Bell, 1988). Third, the
concept of equality is presented from the beginning as a symmetric relationship, and as
an object, with its properties highlighted.

It is clear that much refinement of the approach is possible, and the task has
been taken on by a group of Soviet educationalists, to which we will refer in the next
paragraphs, and also by Dutch educationalists, who developed a programme for the
first two grades of elementary school based on the results of Soviet research, but have
also extended those results considerably (see, for example, Wolters, 1983 and 1991)

Freudenthal on Soviet research on the teaching of algebra

Freudenthal (1974) published a paper centrally concerned with reporting and
analysing the contents of three chapters of a book edited by Davydov, which was
then-—and still is today, as far as we know—only available in Russian (Davydov,
1969).

The paper concentrates on chapters IV, V, and V], respectively, Psychological
foundations of solving problems with literal data, by G.G. Mikulina, Developing
general solving methods, by G.1. Minskaja, and Developing a general method of
solving problems with young children, by F.G. Bodanskij.

We will concentrate in collecting Freudenthal's comments, rather than the actual
content of the chapters, which are conveniently summarised in the paper, where we
also find diagrams produced by pupils and extracts of transcriptions from actual
lessons.

25A test was applied, and the resulis are presented. Through the test, however, we can
only assess the direct retention of formula manipulation rules, but not the overall
impact in the children's thought.
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The first task the paper undertakes, is to understand the principles on which the
traditional teaching of mathematics in the elementary grades—numbers and arithmetic
first—is based, and what kind of support is offered to the alternative proposal.

In the Soviet Union, the traditional teaching of mathematics is justified by the
existence of four "levels of abstraction": in arithmetic, the first is the level of
whole-numbers (7 to 10 years-old), the second is the level of fractions—or quantity
relations—(11 to 12 years-old). In those two levels the numbers are "empirical.” The
third level is that of "arbitrary non-empirical numbers, indicated by letters," (13
years-old), and the fourth level is that of "ratios and equations, the laws of numerical
relations.” (op. cit., p392ff). Expressing a very strong judgement, which is in
agreement with the results of the research carried out by Davydov and others following
his ideas, Freudenthal says that,

"1 think that this order of succession is based upon tradition rather than upon
independent research; just as clsewhere theories are more often created in
order 1o justify old habits than to create new ones.” (op. cit., p393, foolnote
3)

Davydov's approach has already been characterised a few paragraphs above.

According to the tradition in Soviet schools, where teaching the solution of
word problems takes a good part of the programme, the introduction of elements of
algebra has to be analysed from that perspective. Freudenthal comments on the
traditional use of "arithmetical methods," and concludes that,

“The fallacy of traditional didactics is the diversity of methods according to
the—direct or indirect—wording of the problem. There should be a unique
method, which, however, cannot be realized unless letters are nsed to
indicate unknown magnitudes. But even this is not enough; the technique of
solving equations can be better acquired within the explicit context of literal

calculus." (op. cit., p395)

The central notion that is to be used in the new programme, is that of whole and
parts, which can be perceived—although not directly mentioned—in Davydov's paper.

To those general considerations, there follows a summary of the teaching
activity using the notion of whole and part, diagrams of various kinds, and literal
notation.
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The real merit of this approach emerges in full when problems are solved using
the knowledge about quantitative relations gathered in the first parts of the teaching, and
the examples provided on pages 399-400. We present an extract of the teaching
activity, involving, as far as one can gather from the paper, children 8 to 9 years-old.

"An example from the 37th lesson.

The text was: 'One day a boy read @ pages of a book, the next day k and
both days together ¢.' It was noted down in three formulas (c=a+k, k=c-a,
a=c-k). The teacher asked the class to substituie numbers for @ and ¢.

Gena F.; a is equalto 5, and ¢ is equal to 2.

Misa Z.: Wrong, ¢ cannot be 2. This is very small.

Teacher: Why not?

Ljuda B.: It was 5 pages the first day, and ¢ is the whole. The whole cannot
be smaller than a part, thus ¢ cannot be 2, for example, it can be 10 or 8,
Teacher: Well let us write ¢ is equal to 8. We still have the magnitude &k
left. I propose to write k=4. Or is there another proposal?

Andrej K.: It is equal to 3.

Teacher: Who proposes another number?

Sasa Z.: k is equal to 8.

Teacher: Still another proposal?

Misa P.: We cannot thiiik up the magnitude k. Tt is precisely fixed. This
number must be computed, but not thought up. k equals 3.

Teacher: According to which formula must we compute & 7

Anderj S.: k equals ¢ minus a.

Andrej M.: &k equals 8 minus 5, that is, 3." (op. cit., p400)

The considerations of Mikulina, the author of the chapter from which this
passage was extracted, concludes that it is perfectly possible to teach young children to
deal with literal representation of whole-part relations even before they learn numbers,
and that this knowledge can be purposefully used in the solution of literal problems.
Moreover, and crucially important, we think, the use of such approach avoids the
distinction between "direct and indirect problems," as both types are treated in the same
way; more than an unity in relation to solving problems, it is the unity of a mathematical
model that is being developed, and this unity may well serve as paradigm for examining
other problems.

The treatment of more advanced topics, in grades 2nd to 4th, is described in the
following section. The conclusions of the author of the chapter, Minskaja, point out
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highlights the fact that

"Compared with traditional views, the algebrisation of initial mathematics
is closely connected to a qualitatively different interpretation of

generalisation and abstraction,” (op. cit., p406)

After examining the solution of problems with equations, in the four initial
grades, Freudenthal comes to his final conclusions. First, he indicates his disagreement
with using the approach only in relation to a small range of types of problems,
suggesting that the approach could be used in the context of more meaningful
problems, but then he says,

"1 started my appreciation with pointed criticism in order to finish with well
deserved praise of what is valuable, In vivid contrast with the stress on
subject matter and the complete disregard for all details of teaching method
and style which prevails in Western literature, one is struck by the
manifestation of- scrupulous care for details and the clear image of the
didactic process...

What is more important is what I called in the introdiction a sound
pedagogical idea behind the experiments. I mean the idea that abstraction and
generality are—in many cases—not reached by absiracting and generalising
from a large number of concrete and special cases. They are rather reached by
one—paradigmatic—example, or if this is not available—as in algebra—by
a straightforward abstract and general approach. Algebra as it is raditionally
taught, by making algebraic ideas and laws plausible through ridiculous
examples, is a fake, which does not serve any reasonable aim. The
experiments convincingly show that algebra can be taught more adequately,

and at an even carlier age than it is now." (op. cit., p412)

2.3 CONCLUSIONS TO THE CHAPTER

Although not covering in detail all the research into the learning of algebra, this
survey clearly shows that no generally accepted characterisation of algebraic thinking is
available.

Most researchers approach the learning of algebra as the process of abstracting
and generalising from the arithmetic knowledge learned at the initial series of
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elementary school; the Soviet research provides the only exception to this approach that
we could find.

Underlying this evolutionist approach, there are three main beliefs. First, that
thinking algebraically is doing or using algebra, usually including the notion of
"calculating with letters.” Second, that algebra is, in some sense which is not always
made very clear, a generalisation of arithmetic; this position has been criticised, but it
still is quite common. Third, that there exist age-related levels of intellectual
development, and that algebraic thinking can only be achieved by people at the level of
formal operations; difficulties with stage theories have been pointed out, particularly the
lack of stability, within the stages, of the answers given by a same person.

Soviet research has challenged all three beliefs, and as far as we can know,
successfully; the key notion of their approach, is that achieving generality and
abstraction can be done directly, rather than through processes of generalisation and
abstraction from, respectively, particular cases and "concrete” cases. Its theoretical
foundations indicate that it might be the case that building "structures" by first dealing
with the “elements," presents an obstacle that is not totally inherent to "structure,” but
to this specific process for constituting them.

The contrast between the SOLO Taxonomy and the Stage Theories, highlights
the difference that there is between categorising responses and categorising individuals'

-thinking as a whole; although the latter is an obvious aim of epistemology, and a most

valued would-be tool for educators, it is not clear at all that it is possible to achieve it.

The approach of categorising responses, however, is not enough to reveal how
that knowledge is situated within the learner's mathematical ezhos, and for this reason
the technique seems to be better used in the context of broader examination of students’
mathematical performance.

In most of the approaches we have examined, "learning algebra" is strongly—-if
not totally—identified with "learning the contents and techniques of algebra." What
remains hidden in such approaches, is the fact that the content of algebra can be
produced, in many cases, by non-algebraic means, as for example, using areas to
prove that (@+b)2=a2+2ab+b2. In fact, the use of non-numerical models to teach the
contents and techniques of algebra, for example scale-balances and areas, is seen as a
correct way of smoothing the transition from "arithmetic” to its generalised counterpart,
"algebra." The Soviet teaching approach for elementary school does use whole-part
models to generate the relationships which are to be later manipulated in "literal” form,
but this "handicap"” is to some extent compensated by the firm commitment to
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progressing from there to a clearly algebraic approach, as it is seen, for example, in the
treatment of inverse operations?6.

Very few researchers actually examined the implications of using geometric and
other analogies in doing algebra, Lesley Booth being a remarkable exception; it seems,
indeed, that this is an area, within the broader subject of learning and using algebra,
that badly needs more investigation.

The distinction between algebraic and non-algebraic thinking in algebra has to
be clearly understood, and the interplay between them examined. The primary aim of
this dissertation, is to establish a characterisation for algebraic thinking that enables us
to approach those questions on a sound basis; moreover, in the course of making clear
the adequacy and usefulness of our characterisation of algebraic thinking, we examine
some aspects of non-algebraic thinking in algebra.

From the analysis of the research previously carried out, four points emerged,

in relation to which our research exercises as much care as possible:

(i) to avoid focusing the analysis on the use of a given notational form, in
particular the use of letters, unless there is other evidence to support that its
use or lack of use corresponds to, or tells us about, the underlying mode of
thinking;

(ii) to examine pupils' solutions always aiming at the underlying model that
guided the solution process—be the solution correct or incorrect; the
"outcome" is to be understood as the "visible” solution together with
underlying model. Whenever it is possible, we will examine the
possibilities and impossibilities of the model used by the students in
relation to the problem proposed;

(iii) in the analysis of the history of algebra, to avoid a "progressivist” reading;
each mathematical culture will be examined "internally,” ie, in relation to its
own conceptualisations, possibilities and impossibilities. Only from this
perspective, the relation between different mathematical cultures is o be
analysed: the assimilation, rejection or re-interpretation of "imported”
knowledge into the conceptual framework of a given culture;

(iv) overall, to examine the relationship between algebraic thinking—as we
define it—and the algebraic activity, in order to understand in which ways

261t would be unwise 1o believe that there can be an approach which completely avoids
the problem of generating the first relationships to be examined; it secems, though, that if
the step towards examining those relationships algebraically is taken soon enough,
subsequent difficulties are minimised. Also, there are clear advantages in not associating
numbers, as measures, to the parts and wholes, because we can than focus on a general
reasoning procedure which is not dependent of or based on calculating particularities.
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the former may drive the latter, but also the ways in which the latter
highlights the former.
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THE NEED FOR AND THE ADEQUACY OF THE HISTORICAL RESEARCH

Our discussion of mathematics as part of a culture, and our understanding of
learning as a culturally bound process, naturally lead to the need of investigating the
learning of algebra from that perspective. It is not reasonable, however, to expect that
by directly questioning our students on what they think about numbers, algebra,
solving problems, or mathematics in general, we can get consistent, precise
information, exactly because such "metamathematical” considerations are usually not a
part of their lives; in many cases those questions are simply considered absurd by them.
If we ask the mathematician, we will, of course, get answers that reflect a modern
conceptualisation of mathematics; the discussion itself may serve to raise a number of
interesting points about this conceptualisation, but usually it sheds little light on other
forms of conceptualising mathematics.

The study of the historical development of algebra, on the other hand, is the
perfect source for such an inquiry. Our informants are mature thinkers, well used to
thinking about their activity, and, more often than not, they do not represent only
themselves, but a trend, as people who achieved some degree of public recognition. By
studying their mathematical production—which many times include "nonmathematical,"
ie, non-technical, considerations—we can-learn about the intention of théir work,
about the ways in which mathematical objects and concepts are treated, and we can
determine, at least in most cases, around which of those the algebraic activity is
organised. The study of history, then, can provide us with clusters of mathematical
concepts and objects and of conceptualisations of the mathematical activity, and those
clusters, in turn, provide patterns against which students’ mathematical activity can be
examined.

What this historical inquiry cannot provide, however, is a way of arranging the
different aspects and modes of the algebraic activity in a "linear progression" which
could be used to justify, in some sense, the adequacy of this or that order of
présentation of the content in a programme for teaching algebral, and if such "linear
progression"” is seen in history by some authors, it is precisely because they are not
following history, but their own conceptual frameworks. Our investigation of the
historical development of algebra will establish the truth of this claim.,

1To exemplify it briefly: the concept of number in Babylonia is much richer than its counterpart in
Classic Greece; the same Vieta that introduces literal notation for the coefficients of an equation rejects
negative numbers; and in the 17th century Pascal and Barrow—in his time considered a mathematician
second only to Newton—objected algebra because it tacked justification (Cf. M. Kline, 1990, p279).
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AIMS AND METHODOLOGY

In the context of our research, there are three objectives to be achieved with a
study of the historical development of algebra. '

First, we want to determine to what extent it is possible to identify, in the
mathematical cultures examined, a knowledge that can be said to correspond to what we
call today "algebra." The central criteria used to identify "algebraic knowledge," will be
that of a piece of knowledge that explicitly deals with manipulating relationships
involving number-expressions? and arithmetical operations. It is in this tradition that
algebra develops historically, and until quite recently in history it was in fact the only
tradition in algebra. That in many cases numbers are explicitly associated with
geometric rﬁagnitudcs, does not affect our criteria, but if it is the case that a
mathematical object which is clearly recognisable as number is dissociated from
another mathematical object, we will not recognise knowledge related to the latter as
having to do with algebra. In the case of Greek mathematics, this aspect will be
examined in some detail, and our distinction shown to be adequate.

Second, this algebraic knowledge that we identify, has to be understood in the
context of the cultures where it was created, ie, we must determine which is the
meaning of that knowledge within those cultures. This is not only a requirement for the
correct understanding of the knowledge achieved in a historical perspective—as we will
show in the following paragraphs—but it is essential if we want to get, from history,
insights into the process of Iearning algebra and developing an algebraic mode of
thinking, by individuals. A piece of algebraic knowledge has to be characterised in
relation to: (i) the possibilities of the mathematical culture where it is produced, ie, the
ways in which the mathematical activity, mathematical concepts, and mathematical
objects are conceived; and (ii) the intention of the knowledge produced, ie, the scope
and character of that knowledge as perceived within the mathematical culture which
produces it.

Thirg, it is precisely from that perspective that the methodology employed to
study the historical development of algebra can be seen as paradigmatic for the study of

" the development of an algebraic mode of thinking by individuals, as long as this
development is understood—as we do—as the insertion into an aspect of a
mathematical culture, and the mastery of its technical means. It is important, then, that
alohg our historical study, the reader’s mind is focused on the relation between the way
in which mathematical objects are conceived, the ways in which mathematical
methods—in particular algebraic methods—intend their objects in different

2We could take, for example, Martin Ohm's definition of “"expression”: ”...an arbitrary numerical
symbo! or as an arbitrary symbol which has the nature of a numerical symbol." (see, Novy, 1973, p86)

Historical Siudy . 62



mathematical cultures, and the limits to the production of algebraic knowledge
intrinsically expressed in those conditions.

In our historical investigation, we will be concerned with the broader cultural
context to which each of the mathematical cultures we will examine belongbut only to
some extent, as we explained on Chapter 1. We will be concerned with vertical
developments—ie, along time, within a same culture—but only to the extent to which
such development can elucidate changes in conceptualisation, and not in relation to
technical developments per se. The question of "sources," for example whether
al-Khwarizmi's Algebra is or not a compilation of Babylonian and Hindu mathematics,
is not a central concern, unless it can help us to understand the conceptual framework
of a period, or to highlight the fact that a given mathematical culture deliberately
disregarded technical achievements it could have borrowed from another culture.

In their technical aspect, the mathematical results of none of the cultures
examined will be described in detail, apart from the few cases where we judged them to
be worth as illustrations of the points we wanted to make, or to make possible the
comparison with other results.

RATIONALE FOR THE METHODOLOGY USED

Broadly speaking, the historians’ approach to the history of mathematics can be
divided into two groups.

The first group, to which Bourbaki and van der Waerden, belong, see the
history of mathematics as the history of the production of mathematical results.
Matzloff (1988, pS) points out that one of the central characteristics of this approach is
that “there is only one universal science, teleologically structured from its origins
according to categories of thought comparable to those of present day science." (our
translation)

To a second group, to which we can associate the names of Rashed, Martzloff,
Unguru, and Jacob Klein, the history of mathematics has to be studied as a history of
mathematical cultures. Klein will adopt the view that it is necessary to understand the
philosophical context underlying a culture, if we are to understand the mathematics it
produces, and obtains very elegant and deep results with this approach; Rashed will
prefer what he calls an "epistemological closure,” ie, to examine the development of
algebra "“internally,”

"Par 'clowure épistemologique’, je voudrais dire simptement qu'a partir d'un certain seuil,

a partir d'un certain stade de développement de la science, un théoréme de Falgebre est
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produit, et seulement produit, par une séries d'autres théorémes qui existaient

auparavant; il n'y a pas des raisons extérienres,” (Rashed, 1984, p67)

Such "epistemoibgical closure" has the merit of forcing us to look much more
closely to the presentation of the mathematical treatises, and produces important
insights, but it also points out to the possibility of examining the mathematical
production of an individual-—a student solving problems, or a carpenter using
mathematics in his job—and to investigate not only the technical content of the
mathematics being used, but also the way in which this knowledge is organised and
treated.

The differences between the two approaches—the result-wise and the
culture-wise investigations—have some far reaching consequences.

More frequently than not, isolating the technical result from the cultural context
produces strong distortions of the historical reading. Martzloff (1988, p57), for
example, argues that the technique of "translating” ancient terms by means of modern
terminology involves that assumption that, as one obtains the same results, ancient and
modern procedures are but superficially different, two forms of expression of a same
"deep reality.” On the other hand, he says, there is a great risk involved, as modemn
concepts are more general, and one can easily attribute to the ancient terms more than
they actually meant or intended. He also quotes, on a footnote, Marrou, who says that
"Sous prétexte d'atteindre & la réalité profonde, on substitue en toute ingénuité au réel
authentique un jeu d'abstractions réifiées..." We will show, in the course of our
investigation of the historical development of algebra, that Diophantus' algebra does not
admit the substitution of letters as generic coefficients for the specific coefficients he
uses, and that negative numbers in the Chinese fang cheng cannot be understood as a
general mathematical object transferable to other methods within Chinese mathematics.

A result-wise reading of history is also bound to produce the impression that
mathematics proceeds linearly, from counting stones to the sophisticate theories of the
20th century, which is, of course, untrue. Novy (1973, p1) reminds us that

"The nature of mathematics, more than of any other discipline, tempts one to interpret
the history of mathematics only as a sequence of logically linked discoveries which

culminates in the present state of science..."

but such an approach does not tell us anything about the factors that precluded, in a
given mathematical culture, the development of "stronger” results or methods—as, for
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example, in the case of Diophantus not dealing directly with "generic" coefficients—nor
it tells us of why an axiomatic treatment of algebra was not developed in Chinese
mathematics. Summing up beautifully, Rashed (1984, p259) says,

"Comment, en effet, déterminer les véritables changements de style qui purent survenir
alors, et localiser avec rigueur leurs manifestations, si Bachet et Fermat succédent tout
simplement & Euclide et Diophante? Comment, dans ces conditions, se garder d'un

Jjugement qui n'exprime le plus souvent que l'incapacité de discerner les différences?”

In relation to the overall objective of our research, we are exactly interested in
learning about the different ways in which algebraic knowledge can be conceived and
produced, interested in understanding what precludes or bolsters the development of an
algebraic mode of thinking, and the only useful reading of the history of algebra is one
that explores how those aspects are manifest in different mathematical cultures.

THE RELEVANCE OF THE HISTORICAL RESEARCH IN THE OVERALL RESEARCH

The findings of our historical research will help us to establish at once the
cultural character of the development of an algebraic knowledge and of the development
of an algebraic mode of thinking. In different mathematical cultures, we will find a
variety of approaches to number, providing a number of insights into how individuals'~
conceptions of number may affect their understanding of algebra; we will also find
different ways of characterising and organising the mathematical activity, and, again, a
number of insights important to mathematical education are produced.

As we have said before, it must be clearly understood that in no instance it is
our objective to produce any sort of "hierarchy” of levels of development of algebraic
thinking, as it is exactly our thesis that algebraic thinking must be understood as an
intention, and the development of an algebraic knowledge seen both as a result of
employing algebraic thinking and as the development of tools that give greater power
and reach to algebraic thinking. As we learn from history, algebraic thinking drives the
development of algebra, but not exclusively, although it is only the realisation that
extrasystemic interpretations have no relevance to the algebraic activity that makes
possible the establishment of algebra as a theoretical discipline, with the subsequent
changes in the character of the algebraic activity.

The historical development of algebra shows that the algebraic activity involves
a tension between the inner structure of the elements in an algebraic system—for
example, what complex numbers or negative numbers "are," or the fact that
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permutations do not "look like" numbers—and thinking algebraically. We think that
there is an extremely important insight for the teaching of algebra, here, namely, that
the teaching of algebra has to address this tension directly, and this implies that the
development of an algebraic mode of thinking should become an explicit objective of
teaching, rather than wishing that pupils would simply "absorb it" through the learning
of algebraic techniques.

It will also be seen that there is a tension—of a different sort, though—between
"solving problems" and making algebraic thinking explicit, and Vieta's Analytical Art
has the double merit of highlighting this tension and of providing a notational form
which will allow algebra 1o develop in the direction of "method," rather than that of
"solving problems." Traditionally, algebra is introduced in school through "solving
problems with equations.” Qur findings suggest that this might not be the best
approach, but this suggestion only implies that "solving problems algebraically” be
faken as distinct from, not secondary to, activities which aim is deliberately the
development of an algebraic mode of thinking; moreover, we think that the activity of
"solving problems algebraically” is better understood as modelling, in which case the
nature of an algebraic model can be distinguished from that of a geometric,
combinatorial, or functional model, and the nature of algebraic thinking can undergo

further clarification.
3.2 ASPECTS OF GREEK MATHEMATICAL CULTURE -

GREEK DOCTRINES OF NUMBER

The three doctrines which we will examined, are associated to the names of
Pythagoras, Plato, and Aristotle. These three philosophers are of particular interest to
us not only because their work had an immense impact in the formation of our modern
western civilisation, but also because there we find a discussion of the Greek
conceptions about mathematics, and in particular Greek conceptions about numbers.
There should be no doubt that Greek mathematics—or Greek philosophy, for that
matter—was not as homogeneous and linearly developing as our exposition might
make it seem, and also that what we present here is a2 compact version of a complex
subject. In respect to the relation between Greek philosophy and mathematics, we think
that Jacob Klein's Greek Mathematical Thought and the Origin of Algebra is
unsurpassed, and should be a central reference in any study concerned with the subject.

* k ¥k
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Pythagoras, the first philosopher we will consider, lived in southern Italy about
582-500 BC. He—or more precisely, his school, the Pythagoreans—is credited with
the notion that everything in the Universe is number. An example is that of the relation
between the lengths of strings and the tones they produce, so an octave in relation to the
original tone is produced by a string which length is in the ratio 1:2 to another string
(the other characteristics of the strings being the same), and a fifth is produced when
the ratio of the lengths is 2:3.

The distinctive aspect of this Pythagorean notion, is that what it is saying is not
that "the Universe can be expressed through quantitative relationships," as a modern
physicist might say, but that "the being of the Universe is numbers." The two pillars
supporting this conception are exactly those which define the Pythagorean concept of .
number. First, number is only a whole number, and even more, @ definite number of
things. Second, number for them, could not be understood "outside” the world of
things3-4. In other words, number is only manifested in the manyness of a collection
of things>, at the same time it was that which allowed us to know the UniverseS. It is as
an immediate consequence of the nature of number being assimilated to that of counted
collections, that there has always to be a unit, representing "what is being counted,"
and only whole numbers can be conceived. Ratios of whole numbers are never taken as
“fractional numbers" in our sense (as we will see in many passages ahead).

The well known proof that the diagonal of a square is not commensurable with
its side, deeply shook the Pythagoreans' beliefs, and one has to have in mind that
Pythagoras was not "simply a mathematician"; mathematics occupied a very central role
in his philosophy, which embraced mystical, cosmological and moral considerations
(Abbott, 1985). Nevertheless, nor the Pythagoreans neither the other Greek
philosophers opted for "extending” the notion of number to accommodate those new
"ir-rational” quantities; instead, their mathematics, following the philosophical
demands, adheres to a strict separation between numbers and geometrical magnitudes,

3Klein (1968, p67): "Aristotle stresses again and again that it is characteristic of the Pythagorean view
that ‘they do not make number separable [from the things]; this means that they do not go so far as to
suppose the existence of ‘pure’ numbers of ‘pure’ units, although they were the very men who
concerned themselves with numbers not for a practical but for a theoretical purpose, who conceived of
the arithmos as arithmos mathematikos, as scientific number.”

4Morris Kline (1990, p29): "When the carly Pythagoreans said that all objects were compaosed of
(whole) numbers or that nuinbers were the essence of the universe, they meant it literally, because
numbers were to them like atoms are to us.”

9Klein (1968, p65): "The Pythagorean mode of definition is, then, characterized by the attempt to
define the being of things by reducing and assimilating them to conditions "primarily’ exhibited in the
realm of counted collections as such..."

6Klein {1968, p63)" Their [the Pythagoreans] chief object was to understand the ‘order within
heavens™; also, page 67, "Thus the science of the Pythagoreans is an ontology of the cosmos, a
doctrine concerning the mode of being of the world and of the things comprised in it."
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and geometry, developing free of such "limitation”, is definitely brought to the
forefront of Greek mathematics.

In respect to our overall argument, the important point here is that the
Pythagoreans did not deny the study of "irrationals,” but the only model that allowed
them to continue their study was that of geometry, ie, they made sense of irrationality
in the context of geometric figures; not only they did not, they could not conceive the
study of geometry as relating to that of numbers?, Nevertheless, the Pythagorean study
of number will continue to make use of forms (eg, the gnomon, as well as the notion
of figurate number®), which we may well read as geometric, but which have in fact a
deeper significance to the Greek study of number, as we will see in relation 1o the
notion of eidos.

In Plato, who lived in 427-347 BC, in Athens, we find a reformation of the
Pythagorean conception of number, mainly in that for the Pythagoreans number was
the being of things themselves, whereas in Plato, the possibility of counting, which
was on the basis of any knowledge of number (Cf. Klein, 1968, p46)?, is derived from
the existence of a realm of pure monads19, or units, distinct from that of the counted
things1!-12, According to Morris Kline (1990, p43), the distinction between objects of
sense and objects of thought—which will remain in Aristotle—is probably of Socratic
origin!3, In the Pythagorean conception, the fact that number was always "a number of
something," and that number always intended the counted things themselves, in their
multitude, accounted both for the determinedness of each number and for the fact that
number is always a definite number. In the Platonic view, however, there are no
"specific” collections in the realm of pure monads, and the latter can only be accounted
by introducing the notion of eidos (“literally: 'looks'; kind, form, species, 'idea’;

7As we will see, this alone is sufficient to seriously undermine the claim of a geometrical algebra to
be found in Euclid's Elements.
8Squan:. triangular, pentagonal, eic.
9And, thus, any possibility of a negative or irrational aumber is completely precluded.

ich are not in any way presupposed by the Pythagorean conception, as Klein notes on page 69.
11Ktein (1968, p70): "Especially in discussing numbers, Aristotle never tires of stressing that Plato,
in opposition to the Pythagoreans, made them 'separable’ from objects of sense, so that they appear
‘alongside perceptible things' as a separate realm of being.”
12K 1ein (1968, p50): "...now our concem is rather with understanding the very possibility of this
activity [counting], with understanding the meaning of the fact that knowing is involved and that there
must therefore be a corresponding being which possesses that permanence of condition which first
makes it capable of being known'... What is required [in the Platonic doctrine] is an object which has a
purely noetic {noetdn, object of thought] character and which exhibits at the same time all the
characteristics of the countable as such. This requirement is exactly fulfilled by the ‘pure’ units, which
are 'nonsensual,’ accessible only to the understanding, indistinguishable from one another, and resistant
to all partition (Cf. Pp. 231f and 39T, also p53 [of (he Republic])."
BMorris Kline (1990, p43) refers to this distinction as that "between abstraction and material objects";
although tempting, given the modern conceptualisation, Kline's formulation does not apply correctly,
In Plato, the pure monads are not absiractions. )
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sometimes: 'figure"; Translator's note to Klein, 1968)14:15:16, Here, it is the eidos,
and not number, that is to be the object of arithmetic ("Only the arithmoi eidetikoi make
something of the nature of number possible in this our world.” Klein, op. cit., p92).

- Before we progress any further, it is necessary to clarify a distinction essential
in Greek mathematics, that between arithmetic and logistic. In Heath (1981, vol 1,
p13ff) we find that,

"Arithmetic, says Geminus [Rhodes, 1st century BC], is divided into the theory of
linear numbers, the theory of plane numbers, and the theory of solid numbers. k
investigates in and by themselves, the species of number as they are successively
evolved from the unit ...As for the [logistic], it is not in and by themselves that he
considers the properties of numbers but with reference to sensible objects; ... The
scholiast to [Plato's] Charmides is fuller still; 'Logistic is the science that deals with
numbered things, not numbers ... Tis subject-matter is everything that is numbered., Its
branches include the so-called Greek and Egyptian methods in muttiplication and

division...”

Arithmetic is a science, an episteme, and logistic an art. The crucial reason for
this distinction lies in the indivisibility of the unit. The logistician can speak of and
operate with fractions by virtue of the bodily nature of the objects being counted, which
may be divided at will, while the arbitrarily assumed unit of calculation, an apple, for
example, still remains intact. This is not that case in the realm of pure monads, as the
division of the unit can only produce—paradoxically—an increase in the number of
units, as they are all the same.

In Plato, then, the eidos provide a delimited object, and a notion that solves the
difficulty of number being one and many at the same time: number is always
"many,"17 and the eidos to which it belongs is "one"18,

14The notion of eidos in Greek mathematics is a complex one, but instead of trying to offer a
downright "definition,” we prefer to let it gain substance as we repeatedly use it in our argument.

15K1ein (1968, p56): "Precisely because the arithmos as such is not one but many, its delimitation in
particular cases can be understood only by finding the eidos which delimits its multiplicity, in other
words, by means of arithmetike as a theoretical discipline.”

16‘Typical examples of eide are the odd, the even, the odd times even, for example. Also, the
triangular, the square, elc, as in figurate numbers.

17Klein (1968, p46): "...the arithmos [number] indicates in each case a definite number of definite
things...it intends the things insofar as they are present in this number, and cannot, at least at first, be
segparated from things at all."

18 Als0, Klein (1968, p59): "...the absence of any mention of either arithmos -or arithmoi in the
definitions of arithmetic and logistic in the Gorgias and in the Charmides ... expresses the fact that the
multitude of arbitrarily chosen assemblages of monads is accessible to episteme only through the
determinate eide which can always be found for these assemblages...”
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our "modern" conceptualisation of number, is crucial enough to produce Klein's
observation that ,

"The thought of 'pure’ numbers separated from all body is originally so remote that it
becomes the phitosopher's task precisely to point out emphatically the fact that they are
independent and detached, and to secure this fact against all doubt.” (op. cit., p71ff)

Now, this "somatic" nature of numbers which is to be substituted by Plato's
construction, seems to be the source of many obstacles students face in dealing with the
internalism of algebraic thinking, for example in relation to negative numbers; also,
many of the students we worked with in the experimental part of our research, failed to
produce "purely numerical" models to solve the problems we proposed, suggesting that
the "unknown” or the "indeterminate” number could only be dealt with by recourse to a
“somatic” interpretation of some kind. It is true that Plato's model certainly does not
allow for negative numbers, as the pure monads are conceived in a way to allow the
"replication” of collections of counted things, but at the same time, it is this
construction that gives arithmetic the status of episteme, and allows Aristotle to
elaborate further to achieve a conceptualisation flexible enough to provide grounds for
Diophantus' work!?. We think it is adequate, thus, to point out at this early stage, the
roots of such a deep reaching process, so we ¢an be alert to other aspects in it that may
provide us with insights into the obstacles faced by our students.

Plato’s construction involves a much less evident difficulty: since the eide are
the objects of arithmetic, the general notion of number is not possible, once—as
Aristotle noticed and criticised—each eidos has its own nature20. Plato's project of a
theoretical logistic is prevented by this difficulty2!, and only with Aristotle it becomes
possible.

Aristotle (384-322 BC, born in Macedonia) was for 20 years pupil and
colleague of Plato, In 355 BC he founds the Lyceum, in Athens (which comes to be

19Which, in turn, becomes the object of a much later reinterpretation that is to a good extent
responsible for our modern view of number and of algebra.

2014 Aristotle, this difficulty is solved by attributing to the eide a classificatory role, but not a
constitutory one.

21The objective of a theoretical logistic would be 10 offer a "scientific" treatment of number as
counted, ie, in its manyness, as opposed 1o the treatment offered, by arithmetic, lo number as one, ie,
the eide. As Klein (page 23) puts it, "...theoretical logistic arises from practical logistic when ils
practical applications are neglected and its presuppositions are pursued for its own sake," With number
as counted, i, with the logisticians, fractions were allowed by virtue of the bodily nature of the objects
being counted, but this fractioning of the unit is exactly what is not possible in the realm of pure
monads and that which led Plato to turn to the eidos as the object of arithmetic.
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known as the Peripatetic school). In his doctrine, Aristotle operates a radical
transformation of the Pythagorean and Platonic conceptions of number. Instead of
positing, with Plato, that there is a separate, independent, realm of pure monads,
Aristotle argues that the pure "numbers" are obtained by abstraction from (definite)
collections of things. It is necessary, we think, to emphasise that this position is also
substantially different from that of the Pythagoreans, as for them, number is identical
with the being of things, whereas in Aristotle they are distinct, although inevitably
dependent of, the being of things. This situation is arrived at by postulating that the
"pure” numbers arise by disregarding the sense-related qualities of the counted
collections?2, and at the same time asserting that sumber exists only as long as things
are being counted?3. In Aristotle's framework, three types of numbers are
distinguished: (i) the arithmos eidetikos, the idea-number; (ii) the arithmos aisthetos,
which corresponds to the things themselves, which are present for perception in this
number (amount); and, (iii) the arithmos mathematikos or monadikos, which "shares
with the first the 'purity’ and ‘changelessness’ and with the second its manyness and
reproducibility.” (Klein, 1968, p91). The numbers with which the arithmetician deals
are objects of thought, although abstracted from collections of sensible objects, and the
noetic—as opposed to "somatic"—character introduced by Plato is preserved.

In Aristotle, "A number is [only] that which has been counted or can be
counted.” (quoted by Klein, op. cit., p107) Number is revealed only in the process of
counting, and not by virtue of each number by which we count being available through
a "pure" number that exists independently and before ariy counting. It is in this sense
that number is"...derived from the experience of counting multitudes and of culling
from them those different formations 'by abstraction’.” (Klein, p107) A most important
consequence of all this, is that it is impossible, in the context of the Aristotelian
conception, to conceive a number that is neither known nor intended to be known
immediately.

One crucial aspect in Aristotle's conception of number, in fact that which makes
Plato's project of a theoretical logistic possible, appears in his solution to the problem
of the dual "one-many" nature of numbers. In the Aristotelian framework, this question
is solved by observing that counting is possible only insofar as the things being

22K1ein (1968, p104ff)"[Aristotle:] 'The mathematician makes those things which arise from
abstraction his study, for he vicws the after having drawn off all that is sensible...and he leaves only
the [object of the question] 'how many' and continuous magnitudes.(Metaphysics, K3, 1061 a
28ff)'...Not original 'detachment’ but subsequent 'indifference’ characterizes the mode of being of pure
numbers..." :

23KIein (1968, p101): "...the assertion "three trees’ presuppose[s] the assertion 'three,’' but what the
assertion 'three’ intends has no existence ‘outside of the trees of which there are said to be three... At the
root of this Aristotelian conception lies the 'natural’ meaning of arithmos; the assertion that certain
things are present 'in a certain number' means only that such a thing is present in just this definite
multitude: "To be present in number is to be some number of a [given] object."
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}
counted—after the "disregarding” of its visible qualities—become homogeneous, ie,

they are all the same. But this sameness is expressed exactly in the existence of a
common measure, a unit :

"[Aristetie:] ‘For each number is 'many’ because each is [made up of] 'ones’ and because
each is measured by [its own) ‘one’.’ (Metaphysics, 1 6, 1056 b 23 f....) In this sense
the ‘one' (or the one thing subjected to counting) makes counting and thus the
‘counting-number possible...The priority of the one over number does not follow from
a relationship of genus over species, but rather from the character of the one as
'measure’,,,We comprehend a number as one because we do our counting over one and
the same thing, because our eyes remain fixed on one and the same thing.” (Klein,
1968, p108)

This approach enables one to deal with fractional parts, not by "fractioning” the
unit—which 1is, of course, indivisible—but by using different units: to speak of -25— is

simply to speak of five % 's, where % is a unit, and not a number in its own. With

Aristotle, "number is a multitude measured by a unit" (Klein, p109; our emphasis). A
crucial shift from Plato and Pythagoras, is that here the pure unit is the property of
being a measure, rather than being a thing itself. It is precisely this characteristic that
produces the flexibility necessary to Diophantus’ work, and explains why his main
work can be called Arithimetica, a science, at the same time it deals with fractional
parts, an activity previously restricted to logistic. A second shift is seen in the role
played by the eide, which are now much less significant?4; we'll see, in fact, that in
Diophantus they have only an instrumental function, whereas before they were part of
the core of the possibility of understanding number.

Summarising, we saw in the course of this brief examination of the three most
influential doctrines c_onccrning number in Greek mathematics, that the conceptions
contained in each of those doctrines, far from simply being a matter "for philosophy,”
played a major role in determining what could and could not be done in the Greek study
of numbers. Plato's framework allowed for a somewhat "general” treatment of number
through the study of the eide, but it made any attempt to include fractions in this study,
impossible. Aristotle's framework, on the other hand, allowed for the treatment of
fractions in the form of "numbers of fractional parts,” but limited the study of numbers

24K iein (1968, p110); "The 'even,’ the ‘odd,’ the ‘even-times-odd,' elc.,...are now no more than the
‘peculiar characteristics’ of numbers... They represent merely a guality of numbers...The 'what' of each
number insofar as it is a number is precisely that guantity which it indicates; thus 'six’ units are not in
themselves ‘two limes three' units or ‘three times two' units, for this indicates only their 'composile
quality,’ but 'once six’..."
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to that of numbers that are either known or only as yet unknown, ie, intended to be
known. Moreover, by determining what is to be called number, those frameworks
suggest—if not determine—what can be done with those numbers: From Plato to
Aristotle, we move towards a more "natural” conception of number, but as a result we
are held back to a context in which numbers are very much like things, and neither the
assimilation of counting to measuring nor the assertion that mathematics deals with
objects of thought will take us far away from the context of "the natural world.” This is
hardly surprising, as the objective of Greek episteme grew more and more to be the
understanding of the natural world; the association between mathematics and "the
world"” as we find in Pythagoras ("everything is number™), in Plato's postulating of the
existence of a world of ideas independent of us, or in Aristotle's “natural” conception
of number, all point in that direction.

Common to the three doctrines we examined, are the indivisibility of the unit,
and the conception that one is the principle of number but not [a] number itself. Also, in
all three cases, number means "whole number” and "a number of..."; number is a
definite number of things, be they pure monads or objects of the sense.

Another feature common to them is that number has a discrete nature, as a
consequence of them always arising in relation to counting. Geometric magnitudes, on
the other hand, are always continuous, and on this basis alone a first distinction could
be established between the two realms, as the Pythagoreans in fact did. On the
arithmetical Books—VII, VIII, and IX—Euclid represents numbers by lines, but this
is to be seen in the framework of the Aristotelian conception of number, as the
possibility of representing number, understood as a measured multitude, in a
convenient way23:26_It is not the case that in Euclid number become continuous; the
true conception has to be permanently kept in mind, or we are bound to misunderstand
the texts.

Before moving to the Greek mathematical production "proper"—Euclid and
Diophantus, in this case—we have to deal a little more with the problem of
incommensurability. It is frequently asserted that the discovery made by a Pythagorean
was that "the ratio of the hypothenuse to either side [of an isosceles rectangle triangle]

25Klein (1968, p11): "The ‘arithmetical' books of Euclid (VI1, VII, IX) directly mirror this ontological
transformation... The 'pure’ units of which the numbers 1o be studied are compounded are here
understood precisely only as 'units of measurement’ such as can be represented most simply by straight
lines which are directly measurable (rather than by points...), quite independently of whether they form
a 'linear’ (prime), ‘plane,’ or 'solid’ number. The same approach is indicated by Definitions 8, 9, 11, 12,
14 of the seventh book (namely that of even-times-even, even-times-odd, odd-times-odd, prime and
composite number...which define the nature of each number with respect to the measuring character of
it factors..."

26Morris Kline (1990, p136), refers to the use of lines 1o represent numbers as a way of visualising
them. -
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is the irrational number v2 " (eg, Abbott, 1985, p110). Although, of course, correct
from the point of view of our understanding of number, this formulation hides many of
the problems faced by the Greeks. What in fact they concluded was that the ratio
between the side and the diagonal of a square is not the ratio between two numbers, ie,
whole numbers. The Pythagorean "numerical” theory of proportions could not deal
with incommensurability, so the finding did hurt not only the non-mathematical, so to
speak, aspects of their philosophy, but also the certainty of proofs that depended on
such a theory of proportions (Heath, 1981, vol 1, p326).

The theory of proportions developed by Eudoxus (Asia Minor, c408-¢355 BC)
solves the problem of incommensurability, but not, as Dedekind for example did, by
legitimating the existence of irrational numbers. Instead, Eudoxus' theory is
exclusively concerned with geometric magnitudes, and not intended 1o be applied to
numbers?1, In a very reassuring passage, Morris Kline (1990, p48ff) says that,

"Eudoxus introduced the notion of a magnitude... It was not a number, but stood
for entities such as line segments, angles, areas, volumes, and times which could vary,
as we would say, continuously. Magnitudes were opposed 10 numbers, which jumped
from one value to another, as from 4 to 5. No quantitative values were
assigned to magniiudes. Eudoxus then defined a ratio of magnitudes and a
proportion, that is, an equality of two ratios, to cover 'commensurable_ and
incommensurable ratios. However, again, no numbers were used to express
such ratios. The concepts of ratio and proportion were tied to
geometry,. . What Eudoxus accomplished was to avoid irrational as numbers.” (our

emphasis)

Now, neither arithmetic nor a theoretical logistic—at the time of Eudoxus still
not possible— could deal with incommensurability, precisely because number was
always a whole number, and only Eudoxus’ theory provided a way of dealing with it.
As aresult, geometry and number are forced apart, and geometry assumes the leading
role by virtue of offering a way out of the central ontological problem of Greek
mathematics of that time. Morris Kline (1990, p49) points out that "The Eudoxian
solution to the problem of treating incommensurable lengths...actually reversed the
emphasis of previous Greek mathematics. The early Pythagorean had certainly
emphasised number as the fundamental concept..."

27Heath (1990, vol 1, p90): "This subject {the irrationals] was regarded by the Greeks as belonging to
geometry rather than arithmetic, The irrationals in Euclid, Book X, are straight lines or areas, and
Procius mentions as special topics in geometry matters relating (1) to positions (for numbers have no
positions), (2) to contacts (for tangency is between continuous things), and (3) to irrational straight
lines (for where there is division ad infinitum, there is also the irrational).”
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It is then, the solution to the problem, and not "the problem" itself, that turns

Greek mathematics towards geometry; as we will see, the situation in Chinese, Hindu,
and Arab mathematics was quite distinct, and the irrationals are absorbed as numbers.
The effect of such a solution, however, can only be understood, as we indicated
before, in the context of the Greek conception of number.

What we have said so far, immediately enables us to make one very important
point. It is certainly beyond all doubt that all the Greek thinkers mentioned here were
mature thinkers, and indeed sophisticated thinkers. One naturally asks, then, "How
could they had held such 'simplistic' and limiting conceptions about numbers?" This
question is the more relevant to our research as we remember that children, too, have
difficulties in grasping the notion of a fractional number, of a negative number, and
even more that of an irrational number. And we do not mean providing sound logical
foundations for them, but only accepting their being. What the example of Greek
mathematics shows us, is that underlying conceptions, and not intellectual power, are
responsible for the situation that resulted. This is not to say, of course, that a seven
years-old child is as able as an Aristotle to deal with such matters, but simply to point
out that such conceptions, which are unequivocally cultural, part of their culture, of
their whole system of ideas, can and do prevent powerful minds from accepting or
producing some forms of knowledge, and thus, they can and do prevent the production
of whole systems of knowledge--~which, in fact, would have no place in that
culture. The parallel with children's learning should not be made on the basis of the
empirical finding that "these and those conceptions imply this and that that
difficulty,"28 but rather in terms of the overall conclusion that "my understanding and
learning depends on the knowledge being offered having a place in my conceptual
world.

Two other schools should be mentioned in the context of Greek philosophy.
The Tonian school, founded and led by Thales (Mileto, c640-c546 BC), is credited with
starting the drive towards a rational knowledge of nature and with providing the first
definition of number, "...defined as a collection of units, 'following the Egyptian
view'," according to Tamblichus quoted in Heath (1981, vol 1, p69ff); the Eleatic
school, to which Zeno and Parmenides (5th century BC) belonged, is better known by
the studies carried there about continuity and the infinitely small (as seen, for example,
in Zeno's paradox about the impossibility of Achilles beating a tortoise in a race), but

28An approach that wonld certainly produce the most paradoxical didactic situations, as even if a seven
years-old child in today's world thinks that aumber can only be a whole number, her or his experiences
with numbers—telephone numbers, house numeration, car plates, prices, and so on—are infinitely
distant from that of Pythagoras.
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they also produced results in geometry proper, for example Democritus' discovery that
the volume of the cone is one-third of the volume of the cylinder with the same base
and height (M. Kline, 1990, p37). The contributions of both those school to the
understanding of number, however, are far less important than the ones we have
examined in some detail.

We will now turn our attention to the work of two Greek mathematicians:
Euclid and Diophantus, who belong to the Alexandrian—or Hellenistic—period of
Greek culture, which succeeds the Classical period.

Alexandria, the geographical centre of this new phase of Greek culture, was
founded in northern Egypt, in 322 BC, by Alexander of Macedonia, son of Phillip of
Macedonia, the conqueror of Athens, and himself a conqueror of Greece and Egypt. In
the context of this new culture, the old belief that educated people should not be
concerned with an art such as logistic, was slowly discredited. It is also probable that
the much more intense and deliberate exchange with other cultures—by Alexander's
designation—brought into Greek mathematics many new elements, for example a
concern with producing the means for dealing with more "practical” problems. As
Morris Kline observes, "It might be logically satisfactory to think of ¥2 - V3 as an area
of a rectangle, but if one needed to know the product in order to buy floor covering, he
would not have it."; Kline also says that, "...the mathematicians of the Alexandrian
period severed their relation with philosophy and allied themselves with engineering.”
Archimedes, we are reminded, was Alexandrian. Alexandrian mathematics, however,
does maintain the Classical approach of considering the objects of mathematics as
objects of thought29.

This is the context in which the shift towards arithmetic produced in the
Alexandrian mathematics has to be understood: not only a theoretical logistic is made
possible by the Aristotelian framework and by the imports from other cultures, but is in
fact required by the enterprises and scientific context of the time. Rubens Lintz in his
Historia da Matemdtica (of which I only had access to the manuscript version),
supported by a substantial historical research and a convincing argument, suggests that
in fact one should consider Diophantus not as part of a then declining Greek tradition,
but rather as part of a new, emerging, tradition30.

29A fine example of this was Archimedes acceptance of mechanical analogies as means 1o suggest the
truth of theorems, but not as means to prove them, for which task geometry was essential (Cf. Heath,
1981, vo! 2, p21).

30Lintz's argument in this respect is mainly based on the fact that Diophantus work is—in relation to
Lintz's framework—more akin 1o the magic culture of the Arabs, than to the plastic culture of the
Greeks. In the context of the magic culture, the solution of an equation corresponds to the—almost
liturgical—process of revealing what is hidden in the equation, ie, the unknown number.
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The work of the Alexandrians Euclid and Apollonius (in relation to his
geometry) are exceptional in this context, but one has to remember that in both cases,
although more particularly in the case of Euclid, what we have is a reorganisation of the
Greek Classical mathematics; Euclid is at Alexandria only 30 years after its foundation,
and Apollonius' work both in astronomy and on irrational numbers are influenced by
the Alexandrian culture (M. Kline, 1990, 104).

EuCLID

The first Greek mathematician whose work we will examine is Euclid. We
know of his life that he has probably studied in Plato's school in Athens, and after that
moved to Alexandria, where he founded his own school. (Heath, 1981, vol 1, p356).

We will restrict our examination of Euclid's work to his Elements, more
specifically some parts of the Elements which are relevant to our research, ie, those
explicitly concerned with number (yet in the Greek sense), ie, the arithmetical Books
VII, VIII, and IX, and those parts which could be interpreted-—from the point of view
of our modern mathematical notions—as referring to numbers, ie, the "geometric
algebra,” in particular Book II.

Analysis and Synthesis in Euclid

An important aspect of the Elements we would like to emphasise, is made clear
in the words of Heath (1981, vol 1, p371):

"The Elements is a synthetic treatise in that it goes directly forward the whole way,
always proceeding from the known to the unknown, from the simple and particular to
the more complex and general; hence analysis, which reduces the unknown or the more
complex to the known, has no place in the exposition, though it would play an

important part in the discovery of the proofs."

In the case of geometric propositions, the proofs always contain the
construction of the elements sought, so in II,11, for example,

"To cul a given straight line so that the rectangle contained by the whole and one of the
‘segments is equal to the square on the remaining segment." (Fauvel and Gray, 1987,
pli%)
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the solution consists in the construction of the sought cut, followed by the proof that
such cut is actually the required one.

There are two points to consider here. First, not only the Elements, but the
general lack of Classical Greek mathematical texts dealing with the process by which
theorems and proofs are suggested, indicate the extent to which the ultimate aim of
mathematical activity was to provide proofs for mathematical facts: that is what
remained in the final form of the texts. Second, as Heath points out, one should be
aware that some form of analysis must have been used in order to find the
constructions that are part of the proof, and we shall investigate to some extent, what
form this analysis took in Greek mathematics.

We will examine the second point. An indispensable source on the Greek use of
analysis is Pappus' On the Treasury of Analysis, to which we have already referred as
containing a most clear definition of analysis and synthesis. In Pappus' words,

"The so-called Avardvopevog [torog, The Treasury of Analysis) is...a special body of
doctrine provided for the use of those who, after finishing the ordinary Elements, are
desirous of acquiring the power of solving problems which may be set them involving

- (the construction of) lines, and it is useful for this alone, It is the work of three men,
Euctid,... Apollonius of Perga and Aristzeus the elder, and proceeds by way of analysis
and synthesis.” {(quoted in Heath, 1981, vol 2, p400)

The first book listed by Pappus as belonging to The Treasury, is Euclid's Data,
in which the propositions are intended to prove that, "...if in a given figure certain parts
or relations are given, other parts or relations are also given, in one or another of these
senses [to be found in the Definitions]...It is clear that a systematic collection of Data
such as Euclid's would very much facilitate and shorten the procedure in analysis."
(Heath, 1981, vol 1, p422) The example provided by Heath of Prop. 59 of the Dara
(op. cit., p423), is illustrative. Analysis, then, is to be understood as the process that

-goes like, "I want to solve this problem. If X and Y were given, I could solve the
problem; but to construct X and Y, I would need to know Z and W, etc.." At some
point I either arrive at the need of magnitudes that can be constructed only by using the
ones given in the problem—and the problem can be synthetically solved—or I
conclude that some required construction is contradictory with the problems data—in
which case the problem is impossible. It is in this latter sense that the reductio ad
absurdum is a form of analysis3!.

ey, Heath, 1981, vol 1, p372. Wc must add that when Euclid uses this type of proof, as, for
example in IX,20 ("Prime numbers are more than any assigned multitude of prime numbers.”) he is
always dealing with determinate numbers, and what is supposed is a property of that number, only.
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We now offer a possible way in which Euclid's analysis leading to the solution
of II,11 might have taken place. The figure bellow is used, which depicts the problem
as if it had been solved. AB is the given line, E is the middle point of AC, and the
letters are used in exactly the same way as in Fauvel and Gray (1990, p119ff), where
Euclid's demonstration is given, so the reader can easily follow the "way back," ie, the
synthesis. T(x) denotes the square with side x, and O(x,y) denotes the rectangle with
sides x and y, following Mueller's notation (Mueller, 1981, pp42 and 45)

F G
A,
A H B
E) s A,
C KD

Euclid might have thought: "If the problem had been solved, then Aj=Aa, ie,
O(CF,FA)=T(AB). Now, using IL,6 I could relate O(CF,FA) to T(AE) and T(FE),
because IL6 says that O(CF,FA)+T(AE)=T(FE). Good. But, wait...all this means that
T(AB)+T(AE)=T(FE). Hmmm...it smells Pythagoras, this one. Let me look at the
drawing again...Of course!! FE has to be made the same as EB!!"32

Characteristic of analysis used in this way, one is always looking for ways of
producing other magnitudes from the already known, as the objective of the analysis is
exactly to provide the construction of the required magnitudes. Analysis does not
prove, it only shows how the proof can be effected. In algebraic thinking, however,
the central aspect of the process is exactly the analysis, to the extent that establishing
rules by which one can move from the supposition of the unknown being known 1o the
actual production of the unknown become a central part of the method, in the same
way that a book like Euclid's Data ——by providing a knowledge of what can be

32In his 1976 article Defence of a "Shocking” Point of View, quoted in Flauvel and Gray (1987), van
der Waerden states that "al-Khwarizmi’s solution of quadratic equations is equivalent to Euclid's
procedure,” and in van der Waerden (1983, p83ff) he offers his reasons for slating it. Having read both
al-Khwarizmi's and Euclid's books, I was not satisfied with the first assertion, as the only way in
which it conld make sense of it was to take it as meaning that by both procedures one would arrive at
the same final solution, what is hardly surprising, once they are both correct, and his later

"explanation” is artificial—although, of course, possible. It was, thus, 10 my great pleasure, that I
worked out the solution here presented, totally geometrical and leading directly to Euclid's
construction and synthesis.
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obtained from a given geometric configuration—would greatly help the geometric
analysis. The crucial difference is that algebraic thinking intends analysis, whereas the
Data intends the possibility of constructions.

In the solutions given by the students in our Experimental Study, we frequently
observed analysis used in the Euclidean sense, and in many cases only the steps that
actually produce the answer are exhibited.

The claim of a Geometric Algebra in Greek Mathematics

In recent years a debate involving historians of mathematics and mathematicians
concerned with the history of mathernatics, has developed around the interpretation of
what came to be known as the Greek "geometric algebra." According to Klein (p122),
"[Hieronymus Georg] Zeuthen was not the first to understand the ancient mode of
presenting mathematical facts as a 'geometrical algebra,’ although he was the first to
use the term consistently." We will examine the merits of arguments for and against the
"geometric algebra” interpretation, not with the objective of producing an answer to the
question of whether this interpretation is accurate—although in the course of our
examination a negative answer is produced, at least in the case of the Elements—but
rather aiming at the arguments themselves and to the conceptual frameworks which
support them. As a result, we will learn about the impact of conceptual frameworks in
the interpretation of mathematical knowledge, which is closely related, we think, to
their impact on the acquisition and understanding of such knowledge, but we will also
learn about some specific aspects of the context of this debate—namely, about
geometric models and about the use of algebraic notation in the context of those
models. _

Behind the idea of a "geometric algebra” to be found in the Greeks, is the
understanding that a substantial part of the “geometrical" theorems are, in fact,
"algebraic” theorems "dressed up” in a geometrical form33, In his Science Awakening,
van der Waerden goes as far as to say that,

"Presently we shall make clear that this geometric algebra is the continuation of
Babylonian algebra, The Babylonians also used the terms ‘rectangle’ for xy and ‘square’

for xz, but beside these and alternating with them, such arithmetic expressions as
g

331t is clear, from for example the quotation that immediately follows this note in the main body of
the text, that the "geometric algebra” refers to numbers, and not, as one might conceive, to a geometric
“calculus” where propositions are proved to be used Jater on, Would this be the case, there would be no
case at all, apari from dismissing the terminology as inappropriate. A strong motivation for the
"geometric algebra” hypothesis, seems to be the desire to account for the lack of an "arithmetical”
treatment of irrational numbers, The lack exists, it is troe, but it is just a consequence of the Greek
concepiual framework for mathematics.
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multiplication, root extraction, etc. occur as well. The Greeks, on the other hand

~ consistently avoid such expressions...cverything is translated into geometric
terminology. But since it is indeed a translation which occurs here and the line of
thought is algebraic, there is no danger of misrepresentation, if we reconvert the
derivations into algebraic language and use medern notation.” (quoted in Fauvel, 1990,
pl42)

In Euclid, the most relevant Book in relation to the debate about "geometric
algebra" is Book II. The "translation" according the "geometric algebra” interpretation,
gives for the first few propositions:

Prop. I: a (b+(,"+d+.. .} = ab+ac+ad+...
Prop. 1I: (a+b)a+{a+b)b = (a+b)?

Prop. I (a+b)a = ab+a?

Prop.IV:  (a+b)? = a®+2ab+b?

Prop. V:  ab+{1(@+b)-b}*= {L@p)}?

Prop. VI:  (Qa+b)b +a°= (a+b)?

If we understand those propositions as meaning what the use of the algebraic
notation suggest—ie, numerical equalities—we have to assume their Symmeiry. Butin
this case, propositions I and IV put together make proposmon VI in the most direct
way34, In Euclid, however, the construction has to be effected, because the
geometrical configuration that results from Prop. IV (the well known square divided
into two squares and two rectangles) cannot but by means of a geometrical construction
be associated to the geometrical configuration resulting from Prop. VI, no matter how
evident the equality of areas is from its diagram (see figure bellow).

34And "There are, for example simple algebraic derivations of [Prop. Il and II] from

[Prop. I)...Similarly, 11,3 is a consequence of I1,1 because (x+y)y=y(x+y)=yx+yy=yx+y%. Since Euclid
normally takes for granted such geomeirically obvious assertions as T(x)=0(x,x} and O(x.y)=0{(y.x)
[where T{(x) is a square with side x, and O(x,y) a rectangle with sides x and y] , he could have carried
out geometrized versions of these arguments.” (Mueller, 1981, p46) Heath also points out that "It
appears to be Heron [of Alexandria, ¢. 250 AD] who first introduced the easy but uninstructive
semi-algebraical method of proving the propositions 11.2-10 [in the Elements] which is now so
popular. On this method the propositions are proved 'without figures’ as consequences of 11.1
corresponding to the algebraical formulaa (b + c + d+...) = ab + ac + ad +... . Heron explains that it
is not possible to prove 1.1 without drawing a number of lines (ie, without drawing the actual
rectangles), but the following propositions can be proved by merely drawing one line."” (1981, vol 2,
p3ll)
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Prop. VI, Book I (the Elements)

The "algebraic translation” of Prop. V certainly is not immediately identifiable
with that of Prop. V1. The "translation" presented above is to be found in, for example,
Morris Kline (1990, p65), and corresponds literally to the text in Euclid, which is,

"ILS. If a straight line be cut into equal and unequal segments, the rectangle contained
by the unequal segments of the whole together with the square on the straight line
between the points of section is equal to the square on the half.” (van der Waerden,
1983, p78)

Van der Waerden himself, when trying to fit the algebraic notation to the
propositions, notices that Prop. V and Prop. VI correspond exactly to the same
algebraic identity (v.d. Waerden, 1983, p78ff), and says that “This shows that there is
something wrong [in the way he is trying to make sense of the propositions]."”, but
does not consider the possibility of the "geometric algebra" not being a sensible
interpretation. An adequate way of understanding the essential difference between the
two propositions is this: in the figure bellow (Prop. V), we represent proposition V,
with XY corresponding to the "whole", Z the middle point of XY, and T the point of
the "unequal section." It is immediately clear that Prop. V can be "translated” into
(2a+b)b +a= (a+b)2, which is exactly the translation of Prop. VI. However, and this
is the crucial difference between the two propositions, in Prop. VI only a rectangle
(corresponding, for example, to rectangle X'Y in the diagram for Prop. V) is required
to be "moved,” while in Prop. VI, the rectangle and one of the squares are required to
be "moved” (altogether, rectangle XW, which has to be proven identical with rectangle
X'W'). The two propositions are geometrically different, and the inclusion of both
offers strong support to the view that the intended objects are in fact geometric ones,
making the hypothesis of a geometric algebra untenable.
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Prop. V, Book 1 (the Elements)

Van der Waerden believes that the "geometric algebra” of the Greeks actually
intended numbers—rational and irrational-—but represented them with lines and areas.
As we have shown above, this cannot be the case. On the one hand, the Greek
distinction between number and geometric magnitudes is sharp; on the other hand,
number is always a whole number, never an irrational magnitude. Had Euclid simply
used the geometric representation to avoid the problem of incommensurability, he
would have certainly considered that whole numbers and fractions were particular cases
which were "included” in the general treatment using geometric magnitudes, and a
substantially self-contained treatment of number, as we have in the arithmetical Books
of the Elements, would not have been necessary?. Szabé (quoted in Berggren, 1984,
p397) says that the term Geometric algebra should be replaced by Geometry of Areas,
"...in order to emphasize that the theorems are geometric theorems, used to prove other
theorems in geometry, and that there is no concrete evidence that pre-Euclidean Greeks
took over Babylonian algebra and recast it in geometric form.” Mueller (1981, p44)
considers a geometric interpretation "..._sufficiently plausible to render the importation
of algebraic ideas unnecessary."

Of great importance to our understanding of algebraic thinking, the "translation"
into algebraic notation that van der Waerden considers harmless (and that many times is
assumed as the only difference between "the problem” and "the algebraic expression™)
creates a situation where the intended objects are replaced without this fact becoming
apparent: the arithmetisation of Greek geometry it produces could never be accepted—
and, thus, understood—by the very men who produced it, as much as Euclid would
certainly dismiss—probably as ignorant, possibly as mad—anyone that proposed him

35Muelter (1981, p107): "It is striking.. .that although Euclid’s arithmetic thought is often governed by

geomelric analogies, nothing in books VII-IX which has been discussed involves an actual transference

of a geometric truth into arithmetic. In particular, although such notions as those of pIane and square

numbers seem to invite the use of geometric algebra, we have seen no cases in which it has been used.”

M. Kline (1990 p77) also observes that many of the proposnuons of the arithmetical Books are
"proved again,” when they could be referred 1o propositions already proven in Book V.
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~ to consider non-Euclidean geometries. The "translation" of the propositions in Book II
of the Elements hides the true geometric nature of the objects intended.36 By studying
the debate about the notion of a Greek "geometric algebra,” we have become more able
to understand the process by which a conceptualisation—and, thus, an intention—is
imposed on the reading of mathematical production or knowledge, in this case, the
imposition of a much more general framework, leading to the introduction—in the
conclusions by the one imposing his or her views (the impose-tor), but hidden from -
his or her eyes—of improper elements through an impropcr interpretation. In the
study of history, this leads at least to superficiality, and at the worst to paradoxes; but
in the case of mathematical education it easily leads to misguided didactic efforts.

A second point that emerges from investigating the adequacy or not of the
"geometric algebra” interpretation, is that, as we saw with propositions V and VI, if the
intended objects are geometric ones—even when they are being used to represent
numbers-—the geometric configuration in which they are displayed, and the
manipulation of that configuration which takes us to a solution of the problem, play a
central role in the solution process; properties of the geometric objects will be guiding
the solution process. We exemplify. If a square is drawn and lines used to cut the
square in four parts as to illustrate the equality (a+b)? = a®+2ab+b?, the insight is easily
achieved, and the proposition means simply that the square "on the left" can be
decomposed into the pieces represented "on the right". If, however, the proposition is
looked at "backwards,” ie, as representing a2+2ab+b2 = (a+b)2, a number of
difficulties arise; with a substantial amount of goodwill (or mathematical enculturation),
one will agree that the proposition is saying that the pieces "on the left" can be
assembled to produce the square "on the right”. But the pieces "on the left" could be in
any of many different configurations—they could even be scattered; from a geometric
point of view, the problem is ill-formulated. Only when a precise configuration is
required to be shown transformable into the square "on the right" is the problem clear,
and that is exactly why Euclid proves “twice" the "algebraic" proposition, in Prop. II
and Prop. VL

The third point we want to make here, is in connection with Klein's strong
argument against the "geometric algebra™:

36When we look at students in our experimental study that can do "pure calculations” with negative
numbers, and also to solve successfully the equation 100-3x=10 by doing: "100-10=90; 9%0/3=30," but
fail to solve the equation 100-3x=190, we are led to think that the intended objects of the first process
were not numbers, but possibly the elements in a whole-part relationship.
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"This interpretation can arise only on the basis of an insufficient distinction between
the generality of the method and the generality of the object of investigation. Thus
Zeuthen...immediately relates his concept of ‘geometric algebra’ to that of 'general
magnitude.'...[A]néiem mathematics is characterised precisely by a tension between
method and object. The objects in question (geometric figures and curves, their
relations, proportions of commensurable and incommensurable geometric magnitudes,
numbers, ratios) give the inquiry its direction, for they are both its peint of depariure
and its end...The problem of the 'general’ applicability of a method is therefore for the
ancients the problem of the 'generality’...of the mathemaltical objects themselves, and
this problem they can solve only on the basis of an ontology of mathematical
objects.” (1968, p122)

He directly points out to a necessary distinction between method and object in
Greek mathematics. Objects in Greek mathematics are, as Klein lists, lines, figures,
numbers, ratios. One is always speaking of the objects that are "in fact” manipulated.37
To say, as Klein does, that, "The problem of the 'general' applicability of a method
is...for the ancients the problem of the 'generality'...of the mathematical objects
themselves,” is to say that the nature, the constitution, of the objects determine in which
ways they can be manipulated, and, thus, what can be done to solve problems or prove
theorems about them—never using them. As we will see, a central aspect of the

"symbolic invention” of Vieta, is that the focus of attention is explicitly directed to the

method. The predominance of object over method in Greek mathematics, precludes
operations from becoming objects; once they are understood only as natural
possibilities derived from the ontological nature of the objects proper, studying them is

equivalent to studying the objects proper. Allowing the operations to have an

independent existence is not possible in Greek mathematics, precisely because there
would be no insight into the objects on which they operate, and, again, were this
insight produced, it could only come from examining the objects proper directly, and
the independence of the operations would rest annihilated.

In many cases, the students in our experimental study behaved very much in
that way: the "operations” which they use to manipulate the objects present in the
model, ie, to solve the problems, are directly dependent of or derived from properties
that those objects are perceived as having. For instance, if two parts make up a whole
and one of them is removed, we are left with the other part; the "removal” is possible

37The inclusion, in Klein's list, of relations, must be understood as meaning a specific geometric
configuration, or the relation between 1wo consecutive friangular numbers and a square number, and not
as it might mean, for example, the equality relation, which is only a tool (as in the Common Notions
in the Elements) and never the object of study.
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precisely because of the whole being conceived as composed by its parts38, and the
mentioned property of "removal” is a consequence of that and of the non-overlapping
of the parts, ie, it is reduced to properties of a whole and its parts, rather than
irreducibly belonging to the "removal” itself.

The Arithmetical Books

Books VII, VII, and IX of the Elements are known as the arithmetical
books, in which we find 102 propositions about whole numbers and ratios of whole
numbers, most of them dealing with properties of divisibility and proportion.

As we have said before, the arithmetical books are mostly self-contained
(Mueller, 1981, p58). As Mueller also observes, given the independence of those
books, one would expect to find in them specific postulates for arithmetic, but what we
find, instead, are 23 definitions, in which number, prime and composite numbers, etc.
are defined. Definitions 3 and 4 deal with the notions of part and parts:

"(3} A number is part of a number, the Iess of (he greater, when it measures the greater.

{4} But parts when il does not measure.” (Mueller, 1981, p337)

The interesting point about those definitions, is that they reproduce in a very
natural way—on the basis of the notion of a number "measuring” another—the notion ~
of part; if the whole number b is a divisor of the whole number a, then there is a whole
number ¢ such that a=bc. If b is taken as the divisor (as we would tend to do when we
say that "b divides a"), it means that ¢ goes into a, b times; but we can also
understand, in a more direct way, that it is b that goes into @ an exact number of times,
in which case @ can be decomposed into exactly ¢ parts, each of "size" b. Buclid's
definition is elegant, in that it does not deal with "how many parts,” but only with the
fact that b is naturally a part of a. Definition 4 says parts, on the other hand, because:
(i) the greater and the lesser number being whole numbers, there is always a common
measure (in the worst case the unit); (ii) this common measure is a part of the greater
number; (iii) it is also a part of the lesser number, which can be said to be composed
by a number of them. So, in the lesser number, we have (a number of) part's of the
greater number.

Those definitions establish the character of the use of lines as a notational form
in the context of the arithmetical Books: not as continuous lines, but as objects

38This remark may seem somewhat circular, but it is not. The notion of a whole and its paris is
independent of whatever one wishes o do or does with them. "The whole is greater than the part” is in
- fact the only Common Notion stated by Euclid in relation to the whole and its parts,
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measurable by a unit (Klein, 1968, p11). Moreover, considering the question of "how
many times one into another," ie, considering the ¢ in a=bc, is not possible in Euclid,
as it would impply the acceptance of fractional numbers.

Only one operation is defined, multiplication (Definition 16), in which
definition addition is taken for granted3®. We suggest an interpretation for the adoption
of that definition which is compatible with the Greek commitment to an ontology of the
mathematical objects. In Euclid, adding is seen as concatenation (Mueller, 1981, p70),
and the nature of the object produced by addition is obviously the same as that of the
numbers being added, as in fact the parts added are both contained in the result; with
the multiplication of numbers, however, a definition is required exactly to guarantee
that the result is still a numberdV; a further requirement is that the commutativity of
multiplication be proved, as it is not "obvious" as in the case of the "geometric
multiplication” of lines—and which Euclid takes for granted—and this is done in Prop.
16 of Book VII. It is now possible to represent numbers always by lines, and the
expressions plane, square, solid, and cube numbers refer only to their composition in
terms of factors, and not to a geometric nature: literally read, Euclid adds "plane”
(number) with a number that is one of its "sides," a procedure unthinkable in relation
1o true geometric objects.

Of interest to us, is the way in which the representation by lines is used in the
arithmetical Books. In those Books, the lines representing numbers are never used
geometrically in the sense of, for example, Book II, although both multiplication and
proportion could be dealt with by using "true" geometric constructions—as Thales'
theorem, or some of Euclid's own constructions—and thus avoiding the problem of
representing multiplication by the construction of a rectangle, which would limit the
number of factors to three (unacceptable, for example, in Euclid's demonstration of the
infinitude of the set of prime numbers). Instead, the lines in the arithmetical Books are
used either as a mnemonic device (to indicate, for example, the order of the sizes of
different numbers involved, as in Prop. V11,14, or to indicate that the sum of certain
numbers produce another one, as in Prop. VII, 22), or to support a combinatorial
argurmnent.

3%Mueller (p59£f) observes that in Euclid's definition of multiplication, number is used both as a
number proper and as a "metalanguage variable or subscript,” and that "Such usage is impossible
within first order logic but not in an extension to higher order logic...[which] incorporates within itself
all of elementary arithmetic.” We think that this double usage is a natural consequence of the nature of
the Greek number, which is inextricably associating with counting. As we have mentioned before, the
operations are subordinated to the objecis proper, and addition here is no exception; in the framework of
Greck mathematics, the formal distinction between the two usages (number proper and "subscript") is
not required.

e importance of this step can be better appreciated if we consider that the "multiplication” of lines
produce a rectangle, and not another line.
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We would like to remark, at this point, that in the use of geometric objects to
deal with problems requiring the determination of a number, our students' methods
resemble much more the "geometric analogies” used in the arithmetical Books, than a
fully fledged "geometric algebra"—the latter taken in the sense intended by van der
Waerden. In fact, whenever multiplication is represented in that way, the multiplier is
only understood as Euclid's multiplier, ie, as the number of times a line is being
added4l. If in Euclid the definition of multiplication is natural in the context of the
Greek number, as he is dealing only with whole numbers, in our students, who are
sufficiently acquainted with the multiplication of decimal numbers, this behaviour must
represent a restriction imposed by the model being vused, an aspect that is examined in
detail in the chapter in the Experimental Study.

Proportion appears in Definition 21, and it does not involve multiplication:

"(21) Numbers are proportional when the first is an equal multiple of the second and the
third of the fourth, or they are the same part or paris.” (Mueller, 1981, p338)

In view of our interpretation of part and parts, this definition should be
understood as follows. In the case of equal multiples and equal part, it simply states
that the lesser numbers determine the same number of parts in the corresponding
greater numbers. In the case of equal parts, it would say that the number of parts of the
greater numbers to be found in the corresponding lesser numbers are equal; but if we
remember that in the notion of parts any measure common to both numbers will do, a
serious problem arise, because unless the common measure is in each case the greatest
possible, the number of them in each of the lesser numbers would always have to be
compared with reference to the total number of common measures in the corresponding
greater numbers, and we would return to the original problem?®2. It is probably for this
reason that Prop. 2 of Book VIl is,

"2. Given two numbers not prime to on¢ another, to find their greatest common

measure.” (Mueller, 1981, p339)

and Prop. 1 is precisely a preliminary step for the Euclidean algorithm for determining
the GCD of tho whole numbers:

4115 the Ticket & Driving group of problems, for example, it will be seen that this restriction is
responsnble for difficulties when the multiplier is not a whole number,

42(Jsing the greatest common measure corresponds to taking both ratios in its least terms, in which
case the proportionality is reduced to an identity of ratios. ;
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"1. If two unequal numbers are set out and the lesser is always subtracted in turn from
the greater...then, if the remainder never measures the number before it until a unit is

left, the original numbers will be prime to one another.” (ibid.)

The importance of understanding in some detail the arithmetic definition of
proportion (VII,21) is to enable us to compare it to the geometric definition of
proportion—or rather, of equality of ratios—that is given in V,5. The geomerric
definition of proportion is:

"Magpnitudes are said to be in the same ratio, the first to the second ang the third to the
fourth, when, if any equimultiples whatever be taken of the first and third, and any
equimultiples of the second and fourth, the former equimultiples alike exceed, are atike
equal, or alike fall short of, the latter equimultiples taken in corresponding order."
(Heath, 1981, vol 1, p385)43

Euclid's Book V contains in fact Eudoxus' theory of proportion, and as we
have seen before, no magnitudes or ratios were expressed by numbers. Bearing this in

mind, we might represent Definition V.5 as:

ab:cd & Vmn eN then, m-a>nb &om-c>n-d
m-a=n-b <>m-c=n-d

m-a<n-b o>m-c<n-d

An essential difference between VI1,21 and V,5 is this: because in the case of
incommensurable magnitudes the notions of part and parts do not apply, Eudoxus is
forced to define his "general” proportion in terms of a criteria that cannot be finitely
verified, as opposed to the arithmetic one, which immediately allows the development
of an algorithm by which equality of ratios of whole numbers can be verified. The
difficulty here involves the essential difference between the continuity of geometric
magnitudes and the discreteness of number®. In the context of Greek mathematics a
(general) theory of proportions cannot be developed on the basis of the equivalence,

ab:cd < ad=bc
precisely because with the difficulties with the definition of multiplication?3,As we have
pointed out, the general applicability of the method depends, in the conceptual

ywe preferred to use Heath's version of the text, which in this case is clearer than Mueller's whose
text we have followed until here,
44Mentioning Proclus, Heath (1981, vol 1, p90) observes that *...irrational straight lines [is a topic in
§eometry matters] (for where there is division ad infinitum, there is also the irrational).”

5In our "translation” of V,5, it must be clear that the "multiplication” means only that the geometric
magnitude is 10 be taken that number of times, L
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framework of Greek mathematics, on the generality of the object, and the development
of a theory based on muttiplication could not be generally applicable, as we would need
distinct definitions of multiplication for different objects?6. The theory of proportion in
Book V of the Elements, achieves its generality—in the sense of a theory generally
applicable to all geometric magnitudes—by dealing only with ratios as objects proper?’.

In relation to our research problem, that of characterising algebraic thinking and
understanding how different conceptualisations of number and of mathematics can
promote or hinder its development, the comparison of the two definitions of proportion
throws light into important aspects.

First, the non-homogeneity of the realm of geometric magnitudes presents a
problem for the development of an algebraic mode of thinking; the use of a geometric
model to produce algebra, be it in the form of a "geometric algebra” supported by Book
IT of the Elements, or in analogies like the use of a diagram to "prove"” the "formula” for
the square of the sum of two terms, will only introduce or reinforce the
non-homogeneity. Euclid's solution in the arithmetic Books, ie, to force a definition of
multiplication that directly produces the sought homogeneity is adequate in this aspect.
The modern notion of operation addresses the difficulty correctly.

Second, a model for numbers based on properties of whole numbers present
difficulties beyond the obvious inadequacy of Euclid's definition of multiplication for a
multiplier that is not a whole number. In themselves, notions as those of part and parts
suggest the "counting” role of a multiplier; moreover, the notions of addition and
subtraction naturally remain too tightly linked to that of counting, posing an obstacle,
for example, to the acceptance of negative numbers or to the acceptance of 6+7 as an
expression in its own right.

Third, any ontology of irrational numbers derived from or based in rational
numbers will inevitably have to involve either a potential—as in the Intuitionistic
version—or an actual-—as in the Formalist version—notion of infinity. Nevertheless,
and this is a key distinction, algebraic thinking is only concerned with the way in
which the operations defined on those elements work, their properties, and not an
ontology of the elements on which it operates.

46We remind the reader, if at all necessary, that before the theory itself is established it is not possible
to define a general muliiplication in terms of, for example, Thales’ theorem. The product of two lines
can be defined as a rectangle, but the problem with the multiplication of two rectangles, for example, is
unsolvable in Euclid's geometry.

4711 must not be understood, however, that those ratios are "abstract” and gencrally applicable: they are
always ratios of geometric magniludes, and never of numbers. Sce Unguru (1979, p559(f)
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DIOPHANTUS

Diophantus lived in Alexandria, and his main work, the Arithmetica, is dated by
historians as being produced about 250 AD. Diophantus' other works include On
Polygonal Numbers, of which only fragments survived, and the Porisms, a collection
of propositions from which existence we know only through its mention in three
propositions of the Arithmetica. The Arithmetica was originally composed, according
to a remark by Diophantus in its text, by thirteen volumes, but until recently only six of
those had been recovered?®. In 1976 Jacques Sesiano completed the translation of
another four Books, which were translated from Arabic manuscripts; his translation
was published in the book form, which is Sesiano (1982).

It is almost unnecessary to point out the importance of Diophantus' in the
history of mathematics. That his name is attached to Diophantine Analysis, and that
Vieta' Analytical Art was inspired by the Arithmetica seem to be sufficient indication.

From the point of view of our research, however, there are specific reasons for
investigating in some details aspects of the Arithmetica. First, Diophantus is a Greek,
but his work departs in many aspects from the previous Greek mathematics; as Morris
Kline (1990, p143) observes, "...we cannot find traces of Diophantus’ work in his
predecessors."” We will examine his work in order to identify the conceptual framework
that makes it "possible” in comparison with the previously existing Greek mathematics.
Second, the Arithmetica undoubtedly involves algebra, and we shall investigate what
form algcbfa and algebraic thinking took in Diophantus, particularly against the
background of Greek mathematics.

We begin by briefly comparing the arithmetical Books of the Elements with the
Arithmetica of Diophantus. In the arithmetic Books we have a study of the properties
of whole numbers and of proportions involving whole numbers, whereas in the
Arithmetica we have a collection of problems solved with the aid of equations. The
former is systematic, the latter only insofar as to "...arranging the mass of material at
his disposal...[in order to] make the beginner’s course easier and to fix what he learns
in his memory." (Heath, 1964, p131). Euclid, as we saw, represents numbers by lines,
Diophantus uses an "arithmetical” notation, which we will examine further ahead.
Finally, the numbers in the arithmetic Books are never specific, while in the
Arithmetica they are all—including the "unknown" ones—specific.

In view of all that, both works would seem to have no connection possible, but
this is not the case. In both of them, number is the Aristotelian number, ie, "a

48For a thorough examination of the history of the manuscripts and transtations of the Arithmetica up
10 1910, the reader is referred to pages 14-31 of T.H. Heath's edition of the Arithmetica (1964).
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multitude measured by a unit."4? As we saw, this is what allows Euclid to represent
numbers by lines—which are not made into continuous magnitudes because of it—and
it is also what allows Diophantus to speak of "fractions,” as a number of "fractional
parts."

The question of why Diophantus' does not solve his problems for "generic"
numbers, although he always proposes them in "generic” terms, is a most important,
and at the same time, a difficult one to answer. One possibility is that the notation
available to Diophantus prevented him of doing so, but in view of Euclid's use—five
and a half centuries before Diophantus—of lines to represent numbers, and of
associating letters to the lines so he could easily refer to them in the text, it would be
puzzling that Diophantus, whom almost certainly knew the Elements, had not borrowed
the notation for the Arithmetica had he intended the "generality" of the numbers
involved in the problem in the sense of our "general” coefficients of equations. Only to
put the problem in a more complex, but certainly more interesting perspective,
Diopahntus' did use, in his On Polygonal Numbers the same type of line-and-letter
notation employed in the arithmetic Books (see, Heath, 1964, p247ff). The subject of
On Polygonal Numbers being obvious, we are left to say that it is collection of
propositions, all proved in all the possible generality, ie, no particular cases are taken to
be solved as paradigmatic, and it proceeds syntheticallys0,

We must emphasise that the question of “generality” in Diophantus is not one of
historical interest only; a number of issues in the learning of algebra have beén related
to it, as we saw in the review of previous research on the subject, and as we will show,
precious insights can be gained in the process of clarifying and finally answering the
question.

We shall now examine Diophantus' notational system,
Specific numbers in Diophantus are written using the Greek alphabetic notation
for numbers, which is described in detail by Heath (1981, vol 1, p36£f). In this system

we would have, for example, p representing 100, X representing 20, and oM
representing 208; the stroke on the top of the letters was one of the forms used to
distinguished them from verbal text. For the unknown, Diophantus used the finat ¢31,
and for the "powers of the unknown" he used: AY for the square, K Y for the cube,
AYA for the fourth power (square-square), AKY for the fifth power, and K YK for

490n the Peripatetic character of Diophantus' work, see also pages 112, 113, 133 and 143 of Klein
(1968).

50The first proposition of the On Polygonal Numbers in Heath's version is, "If there are three
numbers with a common difference, then 8 times the product of the greatest and the middle + the square
of the Jeast = a square, the side of which is the sum of the greatest and twice the middle number."
51See Heath (1964, p32-38) for a thorough discussion on the origins of the symbol.
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the sixth power. The word used for square, in Greek, was Svvoug, which means
"power," and whose first two letters capitalised become AY; the same happens with
xupog, "cube." We see that Diophantus in fact created, from the limited stock at his
disposition, new symbols; the argument raised that he did not solve the problems in
their "generic" form because no letters were available is, thus, awkward, once he could
have easily made clear the fact that he would use small letters for numbers, with the
stroke, and capital letters for "generic" coefficients.

Other difficulty with his notational system would be the lack of a symbol for a
second, third, etc., unknown. This could be solved, for example, by. adding dots on

the top of the ¢, with Ej, for example, being used for a second "unknown," etc. The
problem would arise with the representations of the powers, but a solution is not
difficult to be worked out. Curiously, we find in Heath himself, one of the proposers
of the "lack of letters” theory, that,

"Again we find two cases, 11,28 and 29, where for the proper working out of the
problem two unknowns are imperalively necessary. We should of course use x and y;
but Diophantus calls the first ¢ as usual; the second, for want of a term, he agrees to
call ‘one unit,' ie, 1. Then later having completed the part of the solution necessary 1o
find ¢, he substitute its value, and uses ¢ over again to denote what he had originally
called '1'—the second variable—and so finds it. This is the most curious case of all, and
the way in which Diophantus, afier having worked with this '1' along with other
numerals, is yet able to put his finger upon the particular places where it has passed to,
50 as to substitute ¢ for it, is very remarkable. This could onty be possible in particular
cases such as those which I have mentioned; but even here, it seems scarcely possible
now to work out the problem using x and 1 for the variables as originally taken by
Diophantus without falling into confusion. Perhaps, however, in working out the
problems before writing them down as we have them Diophantus may have given the
'1' which stood for the [second] variable some mark by which he could recognise it and
distinguish it from other numbers." (Heath, 1964, p52)

The idea of using numeral-letters plus a special sign to distinguish them as a
symbol for an "unknown," which would not be operated with the normal numbers
could also have been considered. So, we have to look bellow the surface of the
problem. - |

A few paragraphs above, we enclosed powers of the unknown in quotes for a
very specific reason. Given our modern conceptualisation of algebra, it is only natural
to expect the "unknown" 1o be defined first, and only then "the powers of the
unknown,” but this is not the case in Diophantus. First, he defines number (which are
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all "...made up of some multitude of units...") and the five eide which we have termed
"powers of the unknown,” and only then he introduces the notion of the "unknown"
and a symbol for it. 1t is truly amazing that of all the books we have consulted on
Diophantus (Heath, 1964 and 1981; M. Kline, 1990; Klein, 1968; Lintz, undated
manuscript; van der Waerden, 1983), only Klein's book takes notice of this fact. This
"inversion" is crucial in determining the character of Diophantus' algebra, and we must
examine it52,

First, it is necessary to remember that in the Aristotelian framework for number
to which the Arithmetica belongs, a number is always determinate or intended to be
determined. With this in mind, we understand that the "unknown" number in
Diophantus can only be as yet indeterminate, or, as Klein puts it, "provisionally
indeterminate,” and not "potentially determinate only.” (p140) After defining the eide,
Diophantus' says that, "It is from the addition, subtraction or multiplication of these
numbers or from the ratios which they bear to one another or to their sides respectively
that most arithmetical problems are formed...[Jand] each of these numbers...is
recognised as an element in arithmetical inquiry." (Heath, 1964, p130)>3 This is the
firm foundation which allows the notion of arithmetic problem to be formed, and it is
this, the problem, that constitutes the "eidos"—to use a very stretched, but illuminating,

metaphor—of the "unknown": "...as the concept of [indeterminate number] becomes
fully understandable only on the basis of figures 'similar’ to one another (ie, given
only in shape and not determinate in size), so also is the unknown to be
understood. . .from the point of view of the completed solution...and as a number which
is about to be exactly determined in its multitude..." (Klein, p140), and, we should
emphasise, a number that rests characterised by the conditions of the problem,

We are now in a position from which we can elucidate why Diophantus does
not solve the problems in their "generic” form, although he proposes them so. In the
Diophantine framework, to solve a problem can only mean to exhibit in full the number
or numbers that satisfy a given, definite problem. Unless the problem is given in
definite terms, the “eidos” of the "unknown"—ie, the equation—is not established, and
the "unknown" itself cannot make sense. To do as we would today, ie, to exhibit the
potential only solubility of a problem by using an algebraic expression such as

S21f only for it pointing out the inversion, we would already be greatly indebted for Klein's work.
However, he also sets with his overall analysis, the only context in which the problem could be
solved. I cannot think of a finer piece of historical analysis in all the very many texts I have consulted
during the research for preparing this text, and I am only obliged, and delighted, to follow closely his
line of reasoning in this part of my exposition.

531t is worth noucmg that, naturally, each of those eide have its side, which is not, however, its
reason of being nor its "origin,” as we would understand nowadays.
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is precisely a non-solution in the framework imposed by the ontological
presuppositions of the Arithmetica. As we have conclusively shown, a notation for
generic coefficients was certainly possible from the notational point of view only, but
we now see that it was also meaningless in the context of solving arithmetical
problems. Neither our "extension" of Diophantus' notation nor Euclid's lines and
letters notation had a reason to be in the Arithmetica. Euclid can use it in the arithmetic
Books because he is not solving problems, he is proving theorems; his procedure is
totally synthetic, which means that all numbers are definite numbers. Diophantus’
procedure, however, is analytic, and as each element in the presuppositions that form
the equations has to be determined either in its manyness or in its form, the requirement
of a determinate eidos is imperative for a number that is not known in its multitude.

The other difficulty to be explained, that of using only one symbol for
"unknown," can be elucidated in similar lines.

We chose the detour of first trying to offer a "surface” solution for the questions
on Diophantus' notational system in order to create a true question about the generality
or not of his solutions, one that was to be answered by our analysis. We can now
safely say that his solutions were truly general, but not in the sense conveyed by
expressing a general solution in algebraic notation. The detour, moreover, highlights
the key role of conceptualisation in the understanding of mathematical knowledge, a
crucial point in our overall argument.

After introducing the definition of number, the ¢ide, and the "unknown,”
Diophantus introduces a sign, fL, "...denoting that which is invariable in determinate
numbers, namely the unit..." (Diophantus, in Heath 1964, p130), and the notation for
the reciprocals of the eide, which uses a sign that we will, for the lack of a better
typographical sign, tepresent by *. For example, AYA* meant the reciprocal of
AYA, and AY * the reciprocal of AYA, etc..

Diophantus uses no special sign for addition; the "forthcoming” terms—the
terms being added—are simply juxtaposed. For the "wanting” terms—the terms being
subtracted—he uses a specially created sign, a monogram: A54. Expressions in

341n explaining the process—as he sees it—by which Diophantus generated his sign for wanting,
Heath says that the use of the initial A in Agwytg (or the inflected form Aur) would not be
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"wanting", which are characteristics of the expression and not of the numbers involved,
and any association of the "wantness” with negative numbers can make no sense in that
context. That Diophantus had a rule for multiplying expressions involving "wanting,"
is well known; the rules are justified in a combinatorial way, very similar to the
inclusion-exclusion principle (see, for example, Anderson, 1989, p67). A sign for
multiplication is not used, because, as Heath (1964, p39) indicates, "...it is rendered
unnecessary by the fact that his coefficients are all definite numbers or fractions, and
the results are simply put down without any preliminary step which would call for the
use of a symbol." For our "=" Diophantus had the sign 1%, an abbreviation of 1c0g,
equal. :
Further discussion of Diophantus’ notational system is irrelevant to our
purposes, but we think it is worth "tasting” Diophantus’ notation "in action," so we
examine a sample solution using it. In the original form, the equations were written into
the course of the speech, ie, they were not displayed each step on a separate line. The
example bellow is extracted from Heath (1964, p48), and the arrangement in lines is
credited to Maximus Planudes (about 1260-1310 AD); we added the algebraic form, in
brackets, to make the comparison of the two systems easier33. The problem is
Diophantus' 1,28, "To find two numbers such that their sum and the sum of their
squares are given numbers.” Notice how Diophantus actually solves the problem of
finding half the difference between the two numbers. (figure follows on next page)

acceptable, as it already denoted a number, and "Therefore an addition is necessary,” the adopted one
being a monogram for Al

55We believe that this illustration should be enough to convince the reader that getting used to
Diophantus’ notation is not a difficult task.
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- 0 — 0 —
[given numbers:] UK pon
(20, the sum) (208, the sum of sq's)
. -~ 0 O —
setting out: o Pl A co
(x + 10) (10 —x)
squaring: AYGcCRIp AYop A ok
(*2 + 20x + 100) (2 +100 — 20x)
adding; AYB I 1° iwon
(2x2 + 200) (= (208)
subtracting: AYB 1° ﬁﬁ
() (=) ®)
dividing: AYg, 1© no
- (Y =) (O
ca © 1B
([1]x) (= 2)
result: 0B v
(12) - (8)

Solution of a problem using Diophantus’ notation.

The eide are never used on their own, not even when there is only "one
square,” as in the line squaring, or "one unknown,” as in the line setting our56,
indicating that the eide are denominations rather then numbers proper, It is also

: 0. —
56Actnatly, in Heath's book one does find in the line squaring, on the right-hand side, AY ue Ak,
which can only be a misprint, as we were not able to find such usage in any other book where
Diophantus’ notation is discussed. -
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interesting that the ¢ is declined—for example in the line squaring, where we find ¢ck
a practice that would produce, in our modern notation, something like 20x's !

We shall now summarise and add some conclusions to our analysis of
Diophantus and the Arithmetica.

Undoubtedly, the Arithmetica of Diophantus has many points of contact with
that which we came to call algebra. In this sub-section, we set out to investigate what
form algebra took in the Arithmetica, in particular, in what sense and to what extent it
could be said to deal with each problem proposed “in generality." The removed
paradigm of algebra, against which Diophantus' is to be examined is our literal or
symbolic calculus, and the question naturally arises, in view of the lack of such
calculus in Diophantus, "...whether Diophantine logistic may not contain within itself
the possibility of a symbolic calculating technique.” (Klein, 1968, p139). Klein says,
moreover, that, '

"Since Vieta this question has been...answered positively...by those who see the
Diophantine science merely as the primitive 'preliminary stage' of modern algebra.
From the point of view of modern algebra only a single additional step seems necessary
to perfect Dicphantine logistic: the thoroughgoing substitution of ‘general’ numerical

expressions for the 'determinate numbers,’ of symbolic for numerical values.” (ibid)

Through our study of Diophantus' work, we were led to conclude that such a
substitution is simply not possible in the Arithmetica, not for circumstantial reasons
such as a "lack of letters,” nor, it goes without saying, for a supposition of Diophantus'
intellectual limitations>7?, Instead, it is the very possibility and intention of his
episteme, to show how, in each specifically given case, the problem can be solved. In
the Arithmetica, to solve a problem is to show actual numbers that satisfy the given
conditions, not just to assert the possibility of determining them, and this as a
consequence of Diophantus' conceptualisation of number and of his theoretical
logistic, which by virtue of the Aristotelian conception of number, can now be named
also as arithmetic. A deep aspect of this knowledge is that the eidos to which the
"unknown" belongs, its species, that without which the "unknown in multitude" is
even unthinkable, is exactly the problem, or, more exactly, the relationships given in
the problem, which when presupposed in the process of analysis blur the distinction

5TWhat I have in mind here, is the surrealistic phrase "Diophantus had not reached the intellectual stage
of formal operations,” which although never uttered in my presence, I sometimes believe to have seen
its ghost.
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between known and unknown, and through which the problem is finally solved: the
equations. _

But we can now ask about someone involved in learning algebra—"our"
algebra—the same question Klein asks about history, thus construed: "Does the
learning of technigues to solve equations in x and possibly y , with specific numbers
as coefficients, contain in itself the possibility of a symbolic calculating technique?”
The case of Diophantus has certainly provided us with richly suggestive insights as to
how approach this question.

CONCLUSIONS

The richness of the insights both into algebraic thinking and into a methodology
for the research in the history of mathematics produced in this section, fully vindicates,
we think, our choice of Greek mathematics as the first historical period to be presented.

From the methodological point of view, Klein's approach to the history of
mathematics must have been felt throughout this section, by anyone who read his book
on the origins of algebra, The benefits of studying the history of mathematics from the
point of view of the conceptual framework of those who produced it are immense, and
they range from the possibility of understanding ways of doing mathematics that
otherwise remain obscure or paradoxical—as the lack of "generic" coefficients in
Diophantus’ solutions—to understanding how a conceptualisation of mathematics and
mathematical objects interacts with the production of mathematical knowledge. More
important, however, in relation to our research, this approach actually provides us with
specific instances of this interaction, and those specific instances form, in turn, a rich
model for understanding processes involved in the acquisition of algebraic thinking by
individuals. |

From the point of view of algebraic thinking, then, our study of aspects of
Greek mathematics showed that:

(i) The knowledge of a calculating practice with numbers, in which different
types of numbers are dealt with, does not imply per se the possibility of
establishing a theoretical study of it, and it is only through the
transformation of tool-operations into object-operations that algebraic
thinking becomes possible.

(ii) There is a tension-—potentially difficult to overcome—between an
ontological understanding of number and the transformation of
arithmetical operations into objects; one way of overcoming this tension is
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(ii)

(iv)

(v)

by collapsing38 ontologically defined numbers into "dimensionless”
elements, which become simply "the elements on which the operations
operate." In order to do this and still retain the possibility of investigating
propositions involving those elements, meaning is shifted to the
operations, ie, they become objects, although having been conceived as
more or less natural consequences of an ontelogy. The problem with this
approach is that the stricter the ontological commitment is, the greater the
difficulty of introducing new elements—numbers—that are consistent
with the operations but not with the ontology of the "primitive" elements.
Arithmetic operations are iomogeneous, ie, if a and b are numbers, and
@ is an arithmetical operation, then a®b is, whenever defined9, also a
number. This clearly distinguishes the arithmetical treatment of numbers
from, for example, a geometric treatment in which the multiplication of
two lines is a rectangle, which cannot be directly added to another line. If
the elements of an operation are collapsed, "dimensionless" elements, as
in (ii), it means that they are not distinguished from one another by a
possible ontology, and the operation is homogeneous. The arithmeticity
of algebraic thinking, in our theoretical model, asserts the homogeneity of
the operations which become objects of in algebraic thinking.
Internalism, in our theoretical model, means disregarding any ontology of
the elements of the operation. As we saw in (ii), this abandonment may be
provisional only, as the degree of autonomy given to the operatiohs,
depends on the strength of a possible commitment to an ontology of its
elements.

In Diophantus' Arithmetica, analysis is central and directly dealt with; in
the arithmetic Books of Euclid's Elements, and in Diophantus' On
Polygonal Numbers, it is auxiliary and kept hidden. In those works, the
possibility of manipulating given but non-specific numbers, as in the
latter, or the requirement of specific numbers, as in the former, are
determined by the ontology of number to which those mathematicians are
comumitted.

58As, for example, in collapsing a "window" in the graphical interface of a computer's operating

system, into an

"icon,” which may then be manipulated in its character of being an "icon" only,

irrespective of being "the icon of a window" and not "the icon of a text document,” "the icon of a
graphics document,” or "the icon of a programme.” Later in this dissentation we will examine this
metaphor again. For the moment it suffices 1o say that this notion of collupsed elements is similar to
what Klein (1968, p109) calls "reduced” structures.

We are using, of course, the word “operation” in the sense in which subtraction is called an
"operation,” which it is not, for example, if we constder only positive numbers.
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Greek ontological commitments are strong enough to keep numbers and
geometric magnitudes apart, even if, from the point of view of the modern
conceptualisation of mathematics, numbers can be taken as particular cases of
"magnitudes.” The separate treatment of proportions involving each of the two types of
mathematical objects, suggest that we should be aware of the possibility of finding such
strong ontological commitments in learners, with the difficulties that would follow.

3.3 ISLAMIC ALGEBRA .

INTRODUCTION

The culture of Islam has its historical beginning at a very precise date, the year
622 AD, when Muhammad, the Prophet, travels from Mecca to Medina. Before that
time, Arabic peoples lived within a tribalistic social structure; the emergence of Islam
answers to the challenge of reforming the old tribal order, and the teachings of the
Coran, the Sacred Book of Revelations, will produce a unity unprecedented in the Arab
world (Pryce-Jones, 1989). In less than a century from Muhammad's journey,
Islamism will have extended over the Middle East, North Africa and Spain.

In one essential point the Islamic culture differs from Greek culture. In Islam
the religious aspect takes over all other aspects of 1ifeS%; faith and revelation are central
notions, and, in fact, "The very word islam ‘means both 'submission’ and 'peace’—or
'being at one with the Divine Will'." (Nasr, 1968, p22). 'But., Nasr (op.. cit., p23)
points out, Islam has three levels of meaning: (i) all men are Muslims, by the mere fact
that they were created by God in that way, and have no alternative to it, as much as a
. flower cannot escape being a flower; (ii) there are those who surrender their will to the
law of Islam, as the warrior who, leaving for battle, says, "And now, God, take my
soul."; and (iii) there is the gnostic, who surrenders his whole being to God, in his way
to achieve pure knowledge and understanding. Islam, then, did not imply a religious
dogmatism that prevented the search for knowledge, and, as Nasr (ibid) puts it,

*...'knowledge’ and 'science’ are defined as basically different from mere curiosity and
even from analytical speculation. The gnostic is from this point of view ‘one with
nature'; he understands it 'from the inside,’ he has become in fact the channel of grace

for the universe. His islam and the islam of Nature are now counterparts,”

60por example, "...Muslim philosophers were Muslim first and philosophers second.” (Qadr, 1990,
P9 :
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The Coran itself is unmistakably clear:

"Whoever wishes to have the benefits of the immediate world let him acquire
knowledge; whoever wishes to have the benefits of the Hereafter, let him acquire '
knowledge and whoever wishes to have both together, let him acquire knowledge."
(quoted in Qadr, 1990, p16)

to what Qadr immediately adds, "Further it may be noted that Islam favours both
rational and empirical knowledge. No dogma, however sacred and ancient it might be,
is acceptable in Islam and to Muslims unless it stands the test of reason.”

The central notion of Islam is unity, not a unity produced by intellect alone, by a
systematisation of our understanding of Nature, but an original unity, one emanating
from God. The prohibition of portraying individual objects in Islamic art has to be
understood in this context, as the avoidance of the particular®l; it is also in this context
that the importance of mathematics in the Islamic culture has to be understood, as a way
to overcome the distance between the multiplicity exhibited in Nature and the unity
underlying Nature.

It would be impossible for us—in the context of this dissertation—to go any
- deeper into the study of the influence of the Coran in Islamic science, but the important
point to be made is this: the Coran provided not only a code for the restructuring of the
tribal social structure of the Arab world of the time, but also, and for us of more
interest, it provided a drive towards the search for knowledge. This is a key aspect of
the Islamic culture, as it prepares the ground for the study, by Muslim scientists and
philosophers, of the work of the Greeks.

From the Greek philosophers, Pythagoras, Plato, and Aristotle were more
deeply studied by the Arabs. Nasr (1968, p70) argues that the interest in the Greek
philosophers probably arose from the position of inferiority in which early Islamic
theologians and philosophers found themselves, unable to defend the precepts of Islam
against Christians and Jew thinkers, who were——specially the former—-an important
source for Greek knowledge in the Islamic culture. From the Pythagorean tradition, its
interest in the mystic aspects of numbers, in its aspect of making possible an

61For a good sample of Islamic art, see Prisse d'Avenne (1989), where on page 10 we read that,
...freezes bearing great foliated scrolls intermixed with human and animal figures, must have appeared
to lhe Arabs as monstrous manifestations of the warped imagination of pantheism.”
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Plato, and in particular of Aristotle was much greaters2.

In view of the importance of mathematics as a "ladder" to higher levels of
understanding (Nasr, 1968, p147), together with the importance given to the reading
and interpretation of Greek philosophy, it is almost paradoxical that one will not find in
Islamic philosophers the same kind of discussion of number, for example, that is found
in Plato and Aristotle. In itself, this is a strong indication that the ontological
commitment of the Greek had to a great extent been abandoned, and this for the reasons
that follow. Although it can be said that the Arabs shared with the Greek the urge to
know Nature, within the Islamic culture the Greek dismissal of empirical knowledge as
lesser and even misleading was rejected. Number as used in all sorts of situations
seems to be the number dealt with by Islamic mathematicians, and not the ontologically
determined number of Plato and Aristotle. There should be no doubt that the Arabs
knew the incommensurability problem, as Euclid's Elements were know to Islam by
al-Khwarizmi's time$3, and it would be unreasonable to think that not being able to
understand it properly, they dismissed it. It seems, instead, that in Islamic mathematics
the factor determining number was the possibility of calculating with them, and as a
consequence the philosophical discussion about number was substituted by a technical
one, as one finds, for example, in their Numerical Analysis (see Rashed, 1978).

About the history of Islamic mathematics in the period before al-Khwarizmi,
Rashed says that little is known—apart from studies in Combinatorial Analysis, which
is, however, always presented in the form of dogmatic rules and in the context of
linguistic and lexicography—and that a patient effort is required to try and reconstitute it
(Rashed, 1984, p18, footnote 6). | |

In order to understand the concept of number adopted by Islamic
mathematicians, we will, then, examine directly the mathematical text, and where
possible, complement this study with references to other Islamic authors,

AL-KHWARIZMI

Know almost universally as the anthor of the treatise from which the word
"algebra” is derived, al-Khwarizmi (c. 780-c. 863, born in eastern Persia) was more
than that. Nasr considers him one of the "universal figures” of Islam, and tells us that
"He wrote the first extensive Muslim work on geography, revising much of Ptolemy

62For a more comprehensive study of the influence of Plato and Aristotle in Islamic philosophy, the
reader is referred to Walzer (1963), O'Leary (1948), and Pelers (1968).

63Translated by Al-Hajag, a contemporary of al-Khwarizmi in the "House of Wisdom,” (Cf. Rashed,
1984, p21) .
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and drawing new geographical and celestial maps. His astronomical tables are among
the best in Islamic astronomy." (Nasr, 1968, p45).

Al-Khwarizmi lived in Baghdad, where he wrote his famous treatise, "Kitab
al-mukhtasar fi hisab al-jabr wa'l-mugabalah,” or "The Brief Book on the Calculus
(hisab) of algebra and muqabala."64 The importance of this book in the history of
mathematics can be measured by the fact that it became a standard textbook on algebra
in medieval Europe, but also for other reasons. First, al-Khwarizmi's treatment of
algebra is not to be found in his Arab predecessors nor in Diophantus, and as we will
show, it has an immediate influence in its contemporaries. Second, because its
approach to algebra represents an important step in the constitution of algebra as an
independent discipline in mathematics. Before examining al-Khwarizmi's Algebra, we
will try and establish a few aspects of the broader context in which the work was
produced.

Baghdad was founded in 762 AD, at at time when Basra was the principal city
in the region, and the Algebra was written there between 813 and 833, the period when
al-Mamun reigned, and established the "House of Wisdom," with a library, an
observatory, and a department for translation (Qadr, 1990, p36); al-Khwarizmi was a
member of the "House of Wisdom."

Almost a contemporary of al-Khwarizmi in Baghdad, was al-Kindi (801-873
AD), the founder of the Islamic Peripatetic school, and the first in a long line of great
Islamic phi1030phersﬁ5. The importance of mentioning al-Kindi here, is to establish
that, at least at a more formal level, we should not expect to find in al-Khwarizmi a
strong influence of the Aristotelian doctrine of number, and in fact this is the case.

Another reference which we think to be necessary, is to the ".. Brethren of
Purity... a group of scholars, probably from Basra, who in the fourth [Hegira)/tenth
[AD] century produced a compendium of the arts and sciences in fifty-two epistles."”
(Nasr, 1968, p152) Their approach to numbers is Pythagorean in the sense that
numbers are studied with a mystical interest (op. cit.,, pp153, 155 and 157). On their
distinction between "number" and "numbered,” however, they are closer to the Platonic
doctrine of number (op. cit., p154).

The important aspect of the text, however, is the importance given by them to
the written form of numbers. On pages 154-155, properties of the first twelve numbers
are given, and we read,

641 ¢ livre concis du calcul d'algébre et d'al-mugabala,” which is the translation into French by Rashed
(1984, p1'7), and which seemed to convey best the purpose and content of the book.,

65See, for example, Peters (1968, p158ff).
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“The property of onc is that it is the principle and origin of numbers...And the property
of two is that, speaking absolutely, it is the first number... The property of three is that
it is the first of the odd numbers; by it one can measure one-third of all numbers... The
property of four is that it is the first square number...The property of five is that it is
the first circular number [?]...The property of six is that it is the first complete number
[equal to the sum of its divisors...The property of eight is that it is the first cubic
number. The property of nine is that it is the first odd square and the last of the single
digits. The property of ten is that it is the first of the two-digit numbers, .,"66

Of interest to us, "nine"” and "ten" are assigned properties that only make sense
in relation to the notational system; in view of the mixture of notational, mathematical
and mystical properties, one could suppose that we are in the presence of an
ill-informed text, but as we said before, the Brethren of Purity was composed by a
group of scholars, and one has to suppose that care was taken as to present only that
which the authors considered as well supported knowledge, a Coranic requirement. But
we are to find the clearest justification for the acceptability of the notational criteria, at
the very beginning of the section to which the description of properties belong:

"Unity and Multiplicity: Expressions indicate meaning; meaning is that which is

named, and expressions are names." (op. cit., p154)

An immediate consequence of this, is that as long as a number can be said or
written, it must be meaningful; it is quite revealing that in the quotation on the
properties of numbers, it says that "two" is the first number absolutely speaking, as one
senses in the whole passage a tension between an attempt to provide a Greek-like
ontology, and a much more flexible—although mathcmaticaliy unsound, of course—
understanding of number. It is in this sense, as an expression, that "square root of
five," for example, acquires meaning, the meaning of a number one can calculate with,
and can thus be uttered and written®7.

Rosen (al-Khwarizmi, 1831, p ix) indicates that there is evidence that
al-Khwarizmi work was informed by the work of the Hindus58, but that it is highly

6611 js inevitable to notice the similarily with "an even number is a number that ends in 0, 2, 4..."
67Sabra (in the entry 7lm al-Hisab (arithmetic), in Lewis et al., 1971, vol IIi, p1138) says that "Like
their Greek predecessors, Arabic authors on the whole considered irrational magnitudes, the subject of
Bk. X of the Elements, as belonging to geomelry rather than arithmetic,” The examination of the work
of leading Arabic algebraists—-al-Khwarizmi, Abu Kamil, al-Karaji and al-Khayyam—shows that
Sabra's statement lacks precision.

68van der Waerden (1985, p10ff) and Nasr {op. cit., p168fT) also indicate that the Siddhanta of
-Brahmagupta served as a basis for the production of al-Khwarizmi's astronomical tables,
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improbable that he knew of the work of Diopahntus, as his Arithmetica was translated
into Arabic only in the 10th century.

We shall now turn our attention to al-Khwarizmi's Algebra itself. We will
always refer to Rosen's translation of the Algebra (al-Khwarizmi, 1831), unless
otherwise stateds®.

The characteristic aspects of the Algebra are three. First, the Algebra isnot a
collection of solved problems, as in Diophantus and in the Chinese and Hindu algebras.
It begins with a theoretical part, in two sections, where the fundamental concepts are
introduced, and the necessary algebraic techniques presented. Second, in the Algebra
not only an irrational number is accepted as the solution of an equation, but we also
find the beginnings of an arithmetical treatment of surds’0, Third, and most important,
the Algebra is conceived as a method which can be applied equally to geometric and
arithmetic problems. (Rashed, 1984, p20)

The Algebra is completely in words; even numbers, in the body of the text, are
written in full, and as algebraic symbolism is so commonly associated to algebraic
thinking, a closer examination of this aspect of the text is necessary. The use, by the
Arabs, of the Hindu notational system for numbers, was certainly a way of
acknowledging its usefulness, and so the question arises, as to why not even in this
case—writing down specific numbers—we will find a symbolic notation?!, Anbouba
gives an explanation which seems—specially in al-Khwarizmi's case, at an early stage
of the Islamic culture—the most likely:

“Elle [the Algebra] est entirement parlée et les nombres mémes y sont écrits en toutes
lettres ce qui en assure une énonciation déclinée conforme aux régles de la grémmaire.
question d'une importance presque religiseuse pour un Arabe." (Anbouba,
1978, p68ff) (our emphasis)

The importance of words in the Islamic world cannot be over-emphasized. The
Coran, probably following the same traditions to be found in the Old Testament,
identifies "knowledge" and the "names of things," (Qadr, 1990, p5) and as the Coran
spread, carrying with it Arabic, with the status of "sacred language” (Nasr, 1968, p30),

69Rosen's translation has been criticised for its inaccuracy, but we preferred to use it than {0 rely only
on fragments in secondary texts, In some cases we could use available passages of Karpinsky's English
rendition of Robert de Chester's translation, quoted in Nasr (1968, p158if),

70Jf!\l-Khwarizmi, however, does not consider negative numbers,

71, Rosen's Introduction to the Algebra: "Numerals in the text of the work are always expressed by
words: figures are only used in some diagrams, and in a few marginal notes."
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p69ff). We have also already mentioned the Brethren of Purity in relation to names and
meaning.

What form, then, does al-Khwarizmi adopts in order to overcome the obvious
difficulty of expressing his Algebra in words? Rashed points out the importance of the
canon, the solving procedure for each of the prototypical equations, and which assume
in each case a “"standard" verbal form. When dealing with the manipulation of
expressions, however, this strategy is not available. Al-Khwarizmi's approach to this
question is truly remarkable. In the first section on the manipulation of expressions, On

"w,

Multiplication (p21£f), he uses, in all the examples, the number "ten": "ten and one

L LN

to be multiplied by ten and two," "ten less one to be multiplied by ten less one," "ten
and two to be multiplied by ten less one,” and then, "ten less thing to be multiplied by
ten," until “ten and thing to be multiplied by thing less ten." The use of "ten” has, we
think, a very special importance here: it is a unit, as the scholars in the Brethren of
Purity called it (Nasr, 1968, p154), but also it is technically more useful than "one" in
that when multiplied—by itself or by another number—it would "leave its mark." In
two times one the "one" is "invisible" in the result, but not the "ten" in two times ten,
This procedure is not followed in the subsequent sections (On Addition and Subtraction
and On Division), but then the need to identify terms in the resulting expression and the
procedure by which it is obtained is less pressing. We think that this usage is
consciously directed at fixing the reader’s attention in the process, at the same time it

lends generality to the "specific” examples.

The somewhat lengthy description of the to initial parts of the Algebra—which
we will now present—is necessary to allow a correct understanding of the treatise. The
usval concise presentations, as one finds for example in van der Waerden (19835), or
the even more concise one in Taton (1948), only produce the characterisation of the
Algebra as a primitive textbook in algebra, which lacks any form of "algebraic”
symbolism (letters) and presents no result of interest, a book which only merit seems,
at times, to be its age’2,

The Algebra begins by clarifying its point of departure:
"...reflecting that all things which men need require computation, I discovered that all

things involve number.,,." (Karpinsky's English edition of Robert de Chester's Latin
translation, quoted in Nasr, 1968, p158)

720n the "Index Historique,” Dicudonné (1987) refers to al-Khwarizmi as "...the author of a treatise on
algebra that lacks originality...”
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and then it briefly explains the nature of the decimal notation for whole numbers:

"Moreover, I found that any number, which may be expressed from one to ten,
surpasses the preceding by one unit: afterwards the ten is doubled or tripled, just as
before the units were: thus arise twenty, thirty. &c., until a hundred; then the hundred
is doubled and tripled in the same manner as the units and the tens, up to a thousand;
then the thousand can be thus repeated at any complex number; and so forth to the

utmost limit of numeration." (al-K., p5)

There are two points of interest, here: (i) the direct association of number and
its notation—in fact the generation of numbers is explained by the possibility of
expressing them—which supports our interpretation that the meaning of number in
al-Khwarizmi—possibly in all of Islamic mathematics—was associated with the
possibility of expressing it and calculating with it; and (ii) there is no mention of
fractions or surds, the former being introduced in relation to the root , and the surds
appearing almost casually later in the book.

As opposed to Diophantus' Arithmetica, the Algebra first "defines" the root 13
and then the square; simple numbers are said to be "...any number which may be
pronounced without reference to root or square.” At one time, the definition of square
is arithmetical, and the "independent terms,” so to speak, are not characterized as a
"number of monads,"” but in themselves.

From there, the Algebra sets out to announce the six prototypical equations to
which all problems wil! be reduced’75,

First case: "squares are equal to roots” (p6) cx?=bx
Second case: "squares are equal to numbers” (p7) at=b
Third case: "roots are equal to numbers” (p7) ax =b

Fourth case: "roots and squares are equal to numbers” (p8) ax?+bx =c

Fifth case: "squares and numbers are equal to roots” (pt1) axt +b=cx

Sixth case: "roots and numbers are equal to squares” (p12) axt =bx +¢

73p6, "...any quantity which is to be multiplied by itself, consisting of units, or numbers ascending,
or fractions descending.”

7AThe existence of six types is mostly due to al-Khwarizmi rejection of negative numbers.

51t is clear that the six types are determined by a combinatorial consideration.
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In each case a numerical example is given and solved by a standard solving
procedure, or canon. Rashed considers the notion of canon to be a key one in the
Algebra,

Devant la diversité des 'gires mathématiques' — geométriques, arithmétiques — I'unité
de Yobjet algébrique est fondée seulement par la généralité des opérations nécessaires
pour ramener un probléme quelconque A une forme d'équation o encore de préférence a
I'un des six types canonigues énoncés par al-Khwarizmi ... d'une part, et par la
généralité des opérations pour déduire des solutions particulidres, c'est-3-dire un canon,
d'autre part.” (Rashed, 1984, p249)

The merit of al-Khwarizmi's work is precisely this: the elaboration of a theory
is possible because al-Khwarizmi intends the method by which the solutions are found,
and the examples he uses in this first part are at one time illustrations and conveyors of
the general solutions?®, On the other hand, this method is still aimed at solving
practical, “concrete,” problems, and an "actual" solution is required??. The true
significance of the disposition of the contents in the Algebra, and also of the statement
which opens the book, is that all the problems in the later parts of the book, be they
geometric or concerning inheritance, whether they require the determination of a
measure or an amount, or an answer to "how much," "how many," or "how long,"
they will be always solved "by numbers" and using the same methods in each case,
without reference to the problems' contexts. Moreover, it is clear that equation is an
object in the Algebra, as not only they are used to provide the prototypical problems,
but also, the normal form of equations is distinguished’3.

Immediately after the six prototypes, al-Khwarizmi gives demonstrations for the
solution procedure in the case of three specific equations. Bellow is the demonstration
of the case x2+10=39, to be found on page 13ff.

"Demonstration of the Case: ‘a Square and ten Roots are equal to thirty-nine Dirhems’ :

The figure to explain this a quadrate, the sides of which are unknown. It

760n page 3, still in the author's introduction, we find that this is a "short work," and that it is
"[confined] to what is easiest and most useful in arithmetic..." We are led 10 believe that al-Khwarizmi
is stating that a more compleie treatise could be composed, but it is not possible to know if the treatise
would be extended in its mathematical part or by presenting a more complete selection of application
problems.

77Externa]ly, then, al-Khwarizmi is close to Diophantus in this respect; it is necessary, however, o
have clearly in mind that in each casc the requirement of "actual” solutions is justified by totally
different conditions. In Diophantus, as we saw, a "generic” solution is impossible, whereas in
al-Khwarizmi it only lacks further motivation.

T8Whenever necessary, al-Khwarizmi remarks that if there is more or less than one square, it must be
reduced to one square, and the other terms in the equation accordingly adjusted.
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represents the square, the which, or the root of which, you wish to know. This is the
figure AB, each side of which may be considered as one of the roots; and if yon
multiply one of these sides by any number, then the amount of that number may be
looked ubon as the number of the roots which are added to the square. Each side of the
quadrale represents the root of the square; and, as in the instance, the roots were
connected with the square, we may take one-fourth of ten, that is to say, two and a half,
and combine it with each of the four sides of the figure. Thus with the original
quadrate AB, four new parallelograms are combined, each having a side of the quadrate
as its length, and the number of two and a half as its breadih [not constructible]; they
arc the parallelograms C, G, T, and K. We have now a quadrate of equal, though
unknown sides; but in each of the four corners of which a square piece of two and a half
multiplied by two and a half is wanting. In order to compensate for this want and to
complete the quadrate, we must add (1o that which we have already) four times the
square of two and a half, that is, twenty-five, We know (by the statement) that the first
figure, namely, the quadrate representing the square, together with the four
parallelograms around it, which represent the ten roots, is equal to thirty-nine of
numbers. If 10 this we add twenty-five, which is the equivalent of the four quadrates at
the corners of the figure AB, by which the great figure DH is completed, then we know
that this together makes sixty-four. One side of this great quadrate is ils root, that is,
eight. If we subiract twice a fourth of ten, that is five, from eight, as from the two
extremities of the side of the great quadrate DH, then the remainder of such
a side will be three, and that is the root of the square, or the side of the
original figure AB. It must be observed, that we have halved the number of the
roots, and added the product of the moiety multiplied by itself to the number
thirty-nine, in order 10 complete the great figure in its four corners; because the fourth
of any number multiplied by itself, and then by four, is equal to the product of the
moiety of that number multiplied by itself [ 4 (%—)2 = (b?)z]. Accordingly, we

multiplied only the moiety by itself, instead of multiplying its fourth by itself, and
then by four. This is the figure: [bellow]” (our emphasis)

D
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Although using geometric figures, al-Khwarizmi's demonstrations should not -

be called "geometric." Anbouba (1978) prefers "proof by figures," to use, he says,
al-Khwarizmi's own words (Al-K., p27), and Rosen himself calls them “geometric
illustrations" (eg, p13); M. Kline (1990, p193) suggests an influence of the Greek
"geometric algebra,” but van der Waerden (1985) correctly observes that for an
insufficiency in his proof of Pythagoras' theorem (p74ff of the Algebra), which is
proved only for the case of an isosceles rectangle triangle, one should be quite sure that
al-Khwarizmi's source is not Euclid. In all his demonstrations we find lines—and
squares—of unknown measure, ie, they are analytical; if it were indeed the case that he
used the "geometric algebra” from some Greek source, a strong reinterpretation must
have taken place, as a geometric construction involving a line of unknown length is not
possible. It seems, instead, that his solutions followed a model like Heron's dissolutio
and compositio method, ie the "splitting-up” and "composition” of rectangles and
squares (Heath, 1981, vol 2, p311).

Following the first part treating the solution of equations, al-Khwarizmi
proceeds to explain the rudiments of an algebraic calculus, and few aspects of his
exposition are worth examining.

In relation to multiplication, he begins by giving a definition that is nowhere
used in the rest of the book: "Whenever a number is to be multiplied by another, the
one must be repeated as many times as the other contains units.” (p21) This definition
applies only to products where the multiplier is an integer number, but al-Khwarizmi
explicitly deals with the product of fractions and surds. The rules he gives for the
multiplication of binomials are perfectly general, in the sense that they not only cover all
possible cases, but also in that they are given first in a general form, and only then
particular examples are examined. The first section of the multiplication rules assumes
that each term is a known number, but they are immediately and with no further
justification extended to those cases where one of the terms of each monomial is the
unknown: "I have explaincd this, that it might serve as an introduction to the
multiplication of unknown sums..." (p23}. On pages 27-31, the basis for an arithmetic
treatment of surds is given, in the form of rules such as nVx2 = V n2x2 and va - Vb
= +ab . The rules are given through specific examples, but their general validity is
always stated following the examples; also, specific examples with irrational numbers

VENTAEEAE

are provided, for example,
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In the case of the addition and subtraction of expressions, he again treats first
expressions involving only known numbers, but this time beginning with specific
examples. On the first two examples he uses irrational numbers as terms in the
expressions to be added and subtracted (v200), and ther gives examples involving
quadratic trinomials in an unknown number. For adding and subtracting expressions,
al-Khwarizmi provides "...the reason...by a figure." (p27) The argument (p31£f) that
provides the "reason" is, in a general form, the following (figure bellow): "To show
that (¢ -a)+(a -b)=c -b". Mélke AB=qa, and AC=b. Then we immediately have, CB=g -b.
Now, make BD=c, and HB=AB(=a). We have, again immediately, DH=c -a. Now
make HS=CB(=q -b), and as HB=AB, we have SB=AC, and as a result, DH(=c -a) +
HS(=a -b) = DB-SB(=c -b). The core of the argument is simply a whole-part
relationship applied to lines, as in AC+BC=AB = AB-AC=BC.

_A
b
a
CB=ab) (@) {C
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Geometrically the argument is not easy applied in the case of the third example
he considers, namely, 50 + 10x - 2x2 + (100 + x2 - 20x). Al-Khwarizmi is well aware
of this difficulty and says that,

“...this does not admit of any figure, because there are three different species, viz.
. squares, and roots, and numbers, and nothing corresponds to them by which they might
be represented [at the same time], We had, indeed, contrived to construct a figure also
for this case, but it was not sufficiently clear... The elucidation by words is very easy.
You know that you have a hundred and a square, minus twenly roots. When you add to
this fifty and ten roots, it becomes a hundred and fifty and a square, minus ten roots.
The reason for these ten negative roots is, that from the twenty negative roots ten
positive roots were subiracted by reduction. This being done, there remains a hundred
and fifty and a square, minus ten roots. With the hundred a square is connected. If you

subtract from this hundred and square the two squares negative connected with fifty,
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then one square disappears Iij_("reason of the other, and the remainder is a hundred and

fifty, minus a square, and minus ten roots... This is what we wished to explain.”

Al-Khwarizmi is careful to manipulate the expressions as to avoid a "negative”
term—"wanting"” in the Greek—to be dealt with without a "positive"” term to which it is
attached. At the same time, the step in which the two squares "negative” are finally
added, al-Khwarizmi shows he is aware of the property that a "wanting" added to a
“positive" will make the latter "disappear,” but this could not be translated into a true
arithmetical property, simply because in al-Khwarizmi-—and in Islamic mathematics for
many years after him-—zero is not considered as a number. Finally, it is clear that the
objective of the "elucidation” is to provide the reader with some knowledge of the
mechanism of manipulating the proposed expressions, not to provide a "logical
foundation”; the difficulties with the geometrical representation are put aside simply by
not using it. The expressions are treated as wholes and parts, with the added feature of
"negative parts", that although not explicitly stated, are skilfully used.

We can now have a better evaluation of the character and importance of
al-Khwarizmi's Algebra.

As we have already said, its two distinctive characteristics are the form of the
presentation and its acceptance of surds as numbers within the calculus.

The central object of the book is clearly the equation, which appears from the
beginning by itself, heading, not following, a problem: each prototypical equation
represents a whole class of problems. The tension between method and object, which
we had discussed in relation to Greek mathematics, is much weaker here; it is around
the equations that solution methods are organised, but it is precisely the generality of
the method of solution for each of the six types of equation that gives them their
character as objects.

It is significant that the instruments by which the expressions in the equations
are manipulated, the calculus with algebraic expressions, is treated separately. In
Diophantus, the manipulation of the expressions themselves was only instrumental, and
almost casually mentioned in the introductory part of the Arithmetica, but in
al-Khwarizmi the subject is given much more autonomy. As Rashed (1984, p25) says,

"Ces chapitres sont bien plus important par l'intention qui les anime que par les
résultats gu'ils renferment. 8i 'on considére en effet les declarations d'al-Khwarizmi, la
place qu'il attribue & ces chapitres.. .et enfin 'antonomie qu'il restitue & chacun d'eux, il

apparait que l'auter a voulu entreprendre pour elle-méme I'étude du calcul algébrique,
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c'est-2-dire des propriéiés des binbmes et trinbmes associés aux équations considérées

dans la précédente partie de son livre,”

The absence of a "geometric illustration” of the rules for multiplying binomials,
which are substituted by examples with specific numbers worked, however, exactly as
the expressions should be; the rules for multiplication of radicals that include examples
involving surds, the reduction of all sorts of problems to problems in number: in all this
an algebraic algebra is anticipated in al-Khwarizmi, but also a different understanding
of number is produced, allowing more freedom to the arithmetical operations, and,
consequently, the extension of the possibilities of an algebraic calculus. Rashed (1984,
p250) sees in the development of an algebraic calculus more than a technical
achievement; '

"Les successeurs d'al-Khwarizmi, tout en poursuivant ses recherches, ont réagi ...
contre l'insuffissance de la démonstration geométrique en algdbre. Cependant, la
nécessité pressantie d'une démonstration numérique n'a é1é elle-méme possible qu'au
terme d'une extension du calcul algébrique et de son domain, puis de sa systématisation.
Les successeurs immédiats d'al-Khwarizmi se mirent & cetic tfiche sans
tarder...L'extension et la systématisation du calcul algébrique ont permis de formuler
I'idée de demonstration algébrique dans 1a mesure ol elles ont fourni les éléments d'une
réalisation possible. Au début du XI® sidcle ... al-Karaji (fin du X® sitcle), s'engage a
donner, outre la démonstration géometrique, une autre démonstration, celle-1a

algébrique, des problemes qu'il considere.”

The requirement of a "numerical”—in Rashed's words—demonstration, as
opposed to a "geometric” one, which in al-Khwarizmi is essentially a combinatorial
proof using lines and areas, precedes and motivates the development of an algebraic
knowledge. In the process initiated by al-Khwarizmi's Algebra, algebraic thinking
means an intention that drives the development of the means necessary to fulfil it.
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SUBSEQUENT DEVELOPMENTS IN ISLAMIC ALGEBRA

The first consequences of al-Khwarizmi's Algebra were soon felt, with
mathematicians engaging in the task of developing both the theory of equations and the
algebraic calculus. Rashed (1984) indicates that al-Mahani "translates into algebra some
biquadratic problems of Book X of the Elements, and cubic problems from
Archimedes,” (p27) and that Abu Kamil and Sinan ibn al_-Fath extend the notion of
algebraic powers?? (p21); ibn al-Fath, for example, solves equations involving the
terms ax2PHN, pxP*N and cx" (Anbouba, 1978, p79).

Abu Kamil, an Egyptian naval engineer (fl. Cairo, about 850 AD), produced an
algebra that is more accomplished than al-Khwarizmi's, both by systematically
providing proofs for the rules in the Algebra, and by treating a far greater variety of
problems. For example, al-Khwarizmi had solved the equation

but he passes from (I) to

X2+ (10x)2 = 2%(10-;:) (1)

without providing any justification. Abu Kamil, however, inserts between (I) and (II) a
demonstration, "by segments,” (Anbouba, 1978, p81) of
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In Anbouba (op. cit., p83), we also find a demonstration—which we reproduce
bellow, in our translation into English—of the transformation of the equation

a

a
X x+c_d

into a "recognisable” quadratic:

79In a footnote to this observation, we find the words of Sinan ibn al-Fath, in which he explains the
series of ascending powers. It is interesting that he gives a nomenclature for them, and then says, "You
are allowed to change those names after you have understood the intention,” which again shows the
attention paid to words in Islamic collure,
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Make the rectangles ABCD and AEFH, with area equal to q, and such that AB=x and

AE=x+¢. )
a _8_
Thus, AD—x , AH"x+c . @
But then, DH=d, and DHGC=dx. @)
As EBFG = DHGC = dyx, then EF = ‘i—" @
and one finally has, AEFH = % {(x+c)=a )]
C 3]
F G H

ABCD = AEFH = a

The demonstration is, as in al-Khwarizmi, a combinatorial one, but with a
higher degree of sophistication that allows Abu Kamil to manipulate the model in a
much more powerful way. In the theoretical part of al-Khwarizmi's Algebra, the area of
a rectangle is never expliéitly associated with a numerical value, and it is mainly its
support for the dissolutio and compositio that is sought; it is only in the introduction
of the section On Mensuration that the numerical link is directly established®0, In Abu
Kamil, this link is much more skilfully explored: in (2) the length of a side is derived,
as a division, from the area and the other side. This use of the “geometrical illustration”
provides the necessary support to deal directly with complex expressions, but as we
saw, Abu Kamil also treated a transformation such as that between (I) and (II) as an
arithmetical transformation—demonstrated, it is true, in a proof with lines.

The firm link of geometric figures and numbers, and the submission of the
geometric model to the operative aspects of the arithmetical treatment, are clear. As
Gandz (1947, p114) says,

"...In EUCLID, geometry is mistress and algebra is hidden and ancillary. With
AL-KHUWARIZMI, algebra predominates and the geometric demonstration is

80"Know that the meaning of the expression 'one by one’ is mensuration...Every quadrangle of equal
sides, which has one yard for every side, has also one for its area. Has such a quadrangle two yards for
its side, then the area of the quadrangle is four times the arca of a quadrangle, the side of which is one
yard. The same takes place with three by three, and so on, ascending or descending: for instance, a half
by a half, which gives a quarier...In the same manner.. .two-thirds by a half, or more or less than this,
always according to the same rule." (al-K., p70ff)
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auxiliary...The most important contribution of ABU KAMIL is that he combines the
algebra of AL-KHUWARIZMI with the demonstrations of EUCLID..."

First with al-Khwarizmi's simpler use, and then with Abu Kamil's refinement,
it is the notion of being measurable with numbers that provides the possibility of such
constructions, which are, of course, symbolic.

A key point in the demonstration presented above is very illuminating: viewed
simply as a geometric demonstration, it is not saying absolutely anything; viewed as a
statement about the numbers involved, it is not saying anything either. In fact, it is
purposeful only as producing a new representation of the original relationship, and the
notion of representation must be understood not in respect to any sort of symbolism,
but in relation to the arithmetical articulation of the terms involved in the equations. It is
in this sense that arithmeticism —in Islamic algebra, as well as in our theoretical
model—is characterised by an acceptance of the arithmetical operations as object.i',
while the process Rashed calls "arithmetisation of algebra” must be understood, in this
context, as the drive towards an arithmetical internalism, ie, accepting the justification
of the procedures of algebra only by its internal coherence in reference to the
arithmetical operations and to an numerical notion of equality®!, and not by reference to
any sort of geometric intuition.

Abu Kamil's methods of demonstrations are dominated by an arithmetical
intention, but they are still, however, dependent on geometrical objects, in a very
specific sense: it is the whole-part properties of the fi gufes that support the
manipulation of the equality relationships in the process, and the specificity of the
geometric configuration used is crucial®2. In the course of the development of Islamic
algebra, this tension will be resolved in two ways. In one line of development, "pure"
algebraic proofs-solutions,ie, internal and arithmetical will be required; in the other,
investigation in algebra will continue to make use of geometry, with the particular
addition of the solution of equations by the intersection of curves. The culmination of
the first tradition in Islamic mathematic is to be seen in al-Karaji, and that of the second,
in al-Khayyam, whose work we will examine later.

To resume the chronology, we saw that around 820 the Algebra of
al-Khwarizmi is produced, and that still in the Sth century, the study and development
of the theory of equations and of the algebraic calculus are lively pursued. The
Elements of Euclid had been translated into Arabic by al-Hajag, a contemporary of

Bia geometric notion of equality would be the notion of a figure being tansformable into another by
means of a geometric construction.

8211 the case of the demonstration we have presented, it is crucial that the two rectangles are produced
in exactly that configuration, directly producing the equality between CDGH and FGEB.
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al-Khwarizmi, but it seems that it had little or no direct influence on the Algebra. The
algebra of Abu Kamil can be considered the culmination of the efforts of the 9th
century.

In the beginning of the 10th century, Qusta Ibn Luga translates Diophantus’
Arithmetica into Arabic, and Thabit Ibn Qurra translates the Conics of Apollonius,
works of Archimedes and the Introduction to Arithmetic by Nicomachus (Nasr, 1968,
p149). In the second half of the 10th century, Abu al-Wafa al-Buzjani wrote two
commentaries, one on the Algebra of al-Khwarizmi, another on the Arithmetica of
Diophantus; he also wrote a "Book of the proofs of the propositions used by
Diophantus in his work..." (Cf. Heath, 1964, p6).

Al-Haytham (c.965-1039) works with prime numbers and the Chinese
Remainder problem, and although Banu Musa83 had already refused, in the 9th
century, the geometric interpretation of arithmetic operations (Cf. Rashed, op. cit.,
p192), during the 10th century the work of the Islamic algebraists was still largely
connected to geometry, as in the work of ibn Qurra (see van der Waerden, 1985,
p18ff)84, and of al-Buzjani (see Nasr, op. cit.,, pi49). It is only in the work of
al-Karaji (about the end of 10th-beginning of 11th century), that the project of an
arithmetically internal algebra begins to materialise.

Al-Karaji83 wrote a treatise on algebra, the Fakhri, of which an abridged
edition—in French-—was given by Woepcke in 1853, reprinted in 1982 (in the
bibliography, Woepcke, 1982). An aspect of his exposition that distinguishes it from
the algebra treatises of his predecessors, is the fact that it begins with a theory of an
algebraic calculus (Rashed, op. cit., p32). According to Rashed,

"Cet exposé a pour but plus ou moins explicite la recherche des moyens de réaliser
Pautonomie et la spécificité de I'algebre afin d'8wre en mesure de refuser, en particulier,
la représentation géometrique des opérations algébriques.” (ibid.)

In this alone, a conéeptual change can be seen, but the mathematical quality of
the book is also outstanding. Without going into a detailed analysis of the Fakhri8, we

83 A5 were collectively called the three sons of Shakir ibn Musa, Muhammad, Ahmad, and Hasan (Cf,
Nasr, 1968, p149).

84yan der Waerden points out that ibn Qurra uscs a unitr () in order to be able to link geometric
magnitudes and numbers, and move from x>+mx=n 1o X’>+mex=ne’.

85This is the spelling used by Rashed, which we adopt. In Woepke's edition of the Fakhri (Woepke,
1982), Alkarkhi is used instead,

86Beside Woepcke's edition of the Fakhri, the reader is referred, for a more complete assessment of the
conient of the book, to R. Rashed's article on Al-Faraji, originally in the Dictionary of Scientific
Biography (1973, v VII, pp240-246), but also a chapter of Rashed (1984).
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may remark that in the book al-Karaji uses a notation (name) for a second unknown
(Woepcke, pl1), and that he defines division and taking the square root as inverse
operations to multiplication and squaring (p53ff). The key technical achievement of the
Fakhri, however, is that it represents the first systematic treatment of an algebra of
polynomials (Rashed, op. cit., p33). The extraction of the root of a polynomial
expression is restricted to the square root, and division is restricted to division by a
monomial, but the fact that the algebraic calculus is weated in itself and without any
recourse to "geometrical illustrations,” is remarkable. Al-Karaji's "arithmetical
intention” is made explicit, as he

"...fait souvent observer qu'on doit &ire préparé l'intelligence des régies du calcul

algébrique...par les régles de l'arithmélique vulgaire...” (Woepcke, op. cit., p7)

instead of simply letting specific examples to slide casually into the exposition; Rashed
(op. cit., p35) remarks that the interest of the "arithmetic algebraists” was to know
better the operative structure of the realm of numbers, and not to construct it
rigourously8?. We have seen that in Abul Kamil numbers are intrinsically associated to
geometric magnitudes, as if "natural” and not requiring any further explanation.
Al-Karaji, however, adopts the definition of incommensurability and irrationality from
Book X of the Elements, and says,

"Je montre comment ces quantités [incommensurables, irrationelles] sont transposées

en nombres.” (quoted in Rashed, op. cit., p36)

an approach that highlights the fact that geometric magnitudes are modelled with
numbers in the process of using algebra to deal with them, ie, an algebraic algebra—as
opposed to a geometric one, where numbers are modelled with geometric
magnitudes—emerges.

The subsequent developments in the process of "arithmetisation" of algebra are
described in detail and depth in Rashed (1984)—it is in fact the central objective of the
book to study this process from al-Khwarizmi onwards.

We think, however, that it is worth mentioning the 12th century Islamic
mathematician as-Samaw'al, author of the al-Bahir, where we find a full statement of

87"Dans 1a tradition de cette algtbre, al-Kharaji et As-Samaw'al purent élendre leurs opérations
algébriques aux quantités irrationelles, sans s'interroguer sur les raisons de leur snccds, ni justifier cette
extension.” (Rashed, 1984)
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the "rule of signs" for the multiplication, in which zero is accepted as & number
(Rashed, op. cit., p46). It is as-Samaw'al who says that

“[algebra is concerned] d'opérer sur les inconnues au moyen de tous les instruments

arithmétiques, comme l'arithméticien opére sur les connues.” (op. cit., p27)

the motto of the "arithmetic algebraists" finally uttered in full. Together with the
mathematical activity proper (new methods and new results), as-Samaw'al develops a
reflection on the subject: he identifies algebra and analysis88 and proposes the
classification of propositions in algebra into 3 sub-classes: necessary, possible and
impossible (A more complete analysis of this classification is to be found in Rashed,
op. ¢it., pp51-52). The classification is remarkable in that: (i) it distinguishes—within
the subclass of the necessary propositions—between propositions that hold for all
numbers (the identities), and three classes of propositions where only a restricted set of
numbers—finite or infinite—satisfy the relationships given (the problems); (ii) it
explicit includes the conjectures, "propositions” to which one could not find yet neither
a demonstration of its truth nor of its falsehood; and (iii) it introduces the notion of
"“proof by absurd” into the field of algebra, to characterise the impossible propositions.

In as-Samaw'al we have an indication of the level of maturity reached, by the
12th century, in the development of an algebraic knowledge that is driven by and
obtained through an algebraic mode of thinking.

A NOTE ON AL-KHAYYAM AND THE GEOMETRIC TREND IN ISLAMIC ALGEBRA

Beside the "arithmetic algebra” trend, there was also, as we have said, the
development of algebra in another direction, namely the incorporation of geometric
methods to it. One of the most important names in the group of Islamic mathematicians
working on those lines—if not the most important—is that of Omar al-Khayyam, We
will examine a few aspects of his work, but only to the extent to which those aspects
help us to establish a distinction between the arithmetic and the geometric approaches to
algebra.

The Persian al-Khayyam lived in the 11th century, and is known in the West
almost exclusively for his Rubaiyat, a collection of around 600 short poems; beside
being a poet, al-Khayyam was a fine mathematician and astronomer, and an important
philosopher (see Nasr, 1968, pp33ff, 52ff, and 160).

88According 10 Rashed, as-Samaw'al wrote a book entircly dedicated to the theme of analysis and
synthesis, which is lost. :
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Rather than attempting any comprehensive account or analysis of his work, we
will instead produce a very short collection of quotes—both from al-Khayyam and
from the analysis of his work—which provide material for us to characterise the
distinction mentioned above:

*  "No attention should be paid to the fact that algebra and geometry are different in
appcarance. Algebras (jabre and maghabeleh) are geometric facts which are proved
by propositions 5 and 6 of Book II of the Elements." (al-Khayyam, in Fauvel and
Gray, 1990, p226)

. "Square square (x2) which is known to the algebraists as the product of square (xz)
by square (x2) has no meaning in continuous values. How is it possible to
multiply a square which is an area by itself? A surface is of two dimensions and
the product of twa dimensions by two dimensions would be four dimensions, and
an object of more than three dimensions is impossible.” (al-Khayyam, in Fauvel
and Gray, 1990, p226)

*  "Omar knows very well that earlier authors sometimes equated geometrical
magnitudes with numbers. He avoids this logical inconsistency by a trick,
introducing a unit of length, He writes: "Every time we shall say in this book 'a
number is equal to a rectangle’, we shall understand by the 'number a rectangle of
which one side is unity, and the other a line equal in measure to the given
number, in such a way that each of the parts by which it is measured is equal to
the side we have taken as unity'." (van der Wacrden, 1985, p24)

*  "...observe that the proof of these methods by geometry is not a substitute for a
proof by numbers (al-jabr) if the subject is a number and not a mensurable
quantity. Do you not see that Euclid proved [the theorems about) proportional
quantitative unknowns when their subject is a number, in Book VII?"
{Al-Khayyam, in Nasr, 1968, p164)

¥ "The algebraists have said that...a cube plus a root equal to a square is equivalent
10 a square plus a number equal to a root...bul they gave no proof in the case
where the subject of the problems was mensurable. However, when the subject of
the problems is a number, that is evident from the Book of Elements, and I shall

prove those of them which are geometrical.” (Al-Khayyam, in Nasr, 1968, p164)

The distinction between geometric magnitudes and numbers is strict, even
implying that an algebraic "reduction” (division of all terms of an equation by the same
number) is not seen as proving a similar equivalence in terms of geometric
configurations; this indicates that for al-Khayyam, solving a geometric problem in
numbers only is not per se an accepted procedure, and a geometric demonstration has
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always to be provided. On the other hand, numerical problems require a
numerical-algebraic treatment. To the predominance of a geometric perception (the use
of a unit to provide homogeneity), one should add al-Khayyam's truly geometric
solutions of cubic equations8?, and the geometric character of his algebra is then well
established.

CONCLUSIONS

We shall now examine the overall dominant characteristics of the development
of Islamic algebra and relate them more closely to our research question.

We begin with two key aspects of that process. First, algebraic thinking was,
as an intention, the driving force behind the development of the algebraic knowledge.
Second, the way in which algebraic thinking provides a paradigm for this
development, is by turning the arithmetical operations into objects through the
requirements of an arithmetical internalism.

The former aspect provides, we think, an important insight into the
epistemology of algebra, by making clear that: (i) algebraic thinking must be
distinguished from algebraic knowledge, if we are to understand the dynamics of the
development of the latter; and, (ii) as a consequence, the research on this dynamics
must necessarily include a study of the mode of thinking supporting the production of
that algebraic knowledge. Seen through the filter of mathematical education, this insight
points out to the fact that the ability to cope with literal notation, for example, cannot be
taken as a safe indication that algebraic thinking is involved, and, thus, it does not
serve as an useful indicator of the possibilities of further development or use of that
particular knowledge, precisely because the applicability of an specific piece of
algebraic knowledge might be tightly bound to the conditions set by the underlying
model, as in the cgse of al-Khayyam, where the reduction of an equation—Ilegitimate in
the context of a problem involving numbers—does not imply the correctness of a totally
corresponding reduction when the objects are geometric magnitudes. In a more
specifically didactic context, we may think of students easily solving the equation
100-3x=16, but having great difficulty with 100-3x=190, even if they are proficient in
dealing with negative numbers, a phenomenon which is investigated in our
Experimental Study (Chapter 4).

89"The method employed is not very helpful in numerical calculations. The numerical solution was
obtained by approximation and trial." {in the entry af-Djabr wa ‘I-Mukabala, in Lewis et al., 1963, vol
11, p362)
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We learned from our study of the development of Islamic algebra, how it
begins—in al-Khwarizmi—with the equation being transformed into an object,
through which whole classes of problems are represented and around which the
solution methods are organised; then—in Abu Kamil—the algebraic calculus gains in
importance, and finally—in al-Karaji and as-Samaw'al—the equation is to a great
extent absorbed into a much more general framework, in which the central notion is
what we call arithmetical articulation. It is in the arithmetical articulation that the role of
the arithmetical operations as objects become clear; when Rashed says that the intention
of the algebraic calculus in al-Khwarizmi is more important then the actual results he
presents, he is highlighting the fact that the "algebraic” approach and the development
of an algebraic calculus were a consequence of the arithmetical internalism, but at the
same time they make possible the achievement of a higher degree of arithmetical
internalism in al-Karaji and as-Samaw'al, suggesting that arithmetical internalism,
algebraic calculus, and the "transformation” approach, all belong naturally to a same
Semantical Field, it also suggests an understanding of "solving equations algebraically"
as a particular instance of a knowledge developed within this Semantical Field, and
meaningful only within it.

There is, then, an important consequence for the teaching of algebra, as the
main objective shifts into establishing an algebraic mode of thinking which drives the
development of the instruments to operate algebraically—instruments which will
support and clarify that mode of thinking; the natural context for this process seems to
be not that of solving numerical equations—by itself or as tools to solve problems—but
that of transforming, arithmetically, internally and in purposeful ways, algebraic
expressions.

In almost all Islamic algebraists, we find the use of "geometric illustrations” at
one point or another. As a rule, those diagrams incorporate lines and areas of unknown
length, which are essential part of the proofs; this is an instance of an analytical but
non-algebraic model, one which can offer us insights into how learners can deal with
the unknown and at the same time avoid its arithmetical manipulation. The use of those
models, however, restricts to positive only the numbers that algebra can deal with; also,
the acceptance of zero as a number is problematic, as it has no sensible geometric
representation. -

The concept of number that seems to underlie the drive towards an arithmetic

internalism in Islamic algebra, is one derived from the possibility of calculating with
them, whole-numbers, fractions, or surds. The existence of an arithmetical treatment of

Historical Sty 123



surds from al-Khwarizmi on, indicates, however, that irrational numbers were
accepted in themselves, and not legitimated only by their rational approximations.

The school students which took part in our Experimental Study, had a
considerable experience in calculating, and for them, whole-numbers, fractions,
decimals, surds, and negative numbers, are all numbers one can calculate with.
Nevertheless, in the process of solving problems, different types of numbers are many
times dealt with differently, indicating that; (i) the models underlying the solutions were
not arithmetically internal, and, (ii) as a consequence, one should expect to find out that
for those students the development of an algebraic knowledge is not perceived, in that
context, as a suitable pursuit: if able to do it for the sake of school, the "rules” are
usually forgotten as soon as the context ceases to exist (leaving school or changing the
subject of the maths classes); otherwise, they sadly fail to grasp the most basic
principles of the subject. That the introduction of algebra represents one of the critical
points in school mathematics, is well known, and we think our interpretation provides
an explanation for a substantial part of the obstacle.

We finish this section, by again stressing that the development of an algebraic
knowledge in Islamic mathematics is strongly related to the requirement of producing
an arithmo-algebraic solution of problems; transposed to the didactic context, this
points out to the need to shift the focus of the teaching of algebra—and for that matter,
of the research on the teaching and learning of algebra—from the contents of algebra
into the ways of producing it, and from solving problems to exploring representations
of a situation, ie, exploring arithmetico-algebraic models.

3.4 HINDU ARITHMETIC AND ALGEBRA OF THE PERIOD AD 200-1200

In this section we will present some facts about Hindu arithmetic and algebra,
but with the only and express purpose of highlighting some characteristics of the
development of Islamic algebra that cannot be understood without this added
information.

Because we will concentrate on factual information only, we decided to use a
single source, a reliable one in this aspect, namely, Morris Kline's Mathematical
Thought From Ancient to Modern Times. His remarks on Hindu arithmetic and algebra
are contained on pages 184 to 188 of volume 1, and the title of the section in which it is
presented is exactly the title we decided to use in this section, if not for its precise
descriptive value, as a sincere acknowledgement of the source.
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Kline says that up to 200 AD, Hindu mathematics is limited to a few geometric
and arithmetic formulas. He also says that during the first part of the period in question,
Hindu mathematics was influenced by Greek mathematics, but he does not say in what
precise way. We leave the matter of the possible sources of Hindu mathematics here, as
it is not relevant to our purposes.

The names of Aryabhata (b. 476), Brahmagupta (b.598), Mahavira (9th
century), and Bhaskara (b. 1114), are given as the important ones in Hindu
mathematics of the period.

Since at least Mahavira, zero was accepted as a "full” number, as he "...says
that multiplication of a number by 0 gives 0, and that subtracting 0 does not diminish a
number." (p185). Also, at least since Brahmagupta, negative numbers were used to
represent debts.

In the Hindus, Kline says—without, however, specifying a date—we not only

find the reduction of quadratic equations to only one type, a reduction made possible by
the fact that they accepted zero as a number, which could stand for itself at one side of
an equation®%, but we also find the acceptance of negative roots of an cquatioh, and the
acknowledgement of two roots for quadratics. Those characteristics are certainly
present in the algebra of Bhaskara, to whom it is said we owe the general formula for
the solution of quadratics—with the exception, of course, of complex roots91.
- Hindu mathematics also acknowledge surds as numbers, and had an
arithmetical treatment of them-—again, the earliest date we find in Kline is that of
Bhaskara (12th century), who says, "Term the sum of two irrationals the greater surd;
and twice their product the lesser one. The sum and difference of them reckoned like
integers are s0," together with the numerical example,

VB+412=V (3 + 12) + 2¥312=v27 =33

which, Kline observes, is the application of

a+b=(a+b): =V a2+b2+2ab

with a=v3 and b=V12 .
Their arithmetic was completely independent of geometry.

90K line says that the reduction to one type of quadratic was due to the acceptance of some of the
cocfficients being negative, but this is clearly insufficient.

91 The idea of the square root of a negative number is considered by Bhaskara, to be discarded as
impossible: no square gives a negative number,
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In relation to the use of symbolism, we think it is better to quote a full
paragraph in Kline:

"They used abbreviations of words and a few symbols to describe operations. As in
Diophantus, there was no symbol for addition; a dot over the subtrahend indicated
subtraction; other operations were called for by key words or abbreviations; thus ka
from the word karana calted for the square root of what followed. For the unknowns,
when more then one was involved, they had words that denoted colors. The first one
was called the unknown and the remaining ones black, blue, yellow, and so forth, The
initial letter of each word was also used as a symbol. This symbolism, though not
extensive, was enough to classify Hindu algebra as almost symbolic and certainly more

so than Diopahntus’ syncopated algebra.” (p186)

As we have already said, Islamic mathematicians, from al-Khwarizmi on, were
informed on Hindu mathematics. The question arises, then, as why in Islamic
mathematics, the acceptance of zero as a number has to wait until as-Samaw'al (12th
century), while in the Hindus it appears as early as the 9th century. A provisional
answer might be provided, by referring to the tension between arithmetical treatment
and geometrical demonstrations, as well as by a reference to an influence of the Greek
conception of number as "number of something"; we saw, however, that the Islamic
commitment to an ontologically defined number is much weaker than in the Greeks,
which leaves the former as the most likely answer, specially when we consider that the
Hindus never provided any sort of proof, and the obstacle of a "geometric illustration"
would not arise. Nevertheless, more important, to us, than to answer such historical
question, is to point out to the clear fact that the technical aspect of a knowledge,
"adaptable” as it might seem from the point of view of our conceptualisation, to another
culture's body of knowledge, will only be accepted if it has a place in the conceptual
framework of the "adopting" culture, and while the dispute between arithmetic and
geometry as the foundation for algebra is not resolved, zero as a number-cannot belong
to Islamic algebra.

On the other hand, the clear fact that the Hindu notion of number is based on a
calculating practice, ie, in numbers as they are used, provides us with another
indication of the Islamic conception of number, as they certainly borrowed in notation
and calculating techniques from the Hindus.

In relation to the use of symbolism and syncopated forms of notation, one has
again to raise the question as to why the Hindu custom failed to motivate Islamic
authors, and we are again led to the importance of the written word in Islamic culture,

£

Historical Study 126



as well as to the question of the conditions under which that which might appear to us
as a mere "technical” aspect, can be subscribed by another culture.

3.5 ASPECTS OF CHINESE MATHEMATICS

INTRODUCTION

The Chinese civilisation is a phenomenon unequalled in the history of mankind.
Its beginning is dated at about the 21st century AD, with the first Xia Dynasty, and
until today Chinese culture is seen as retaining a strong personality, despite the
transformation of China into a Republic (1912) and despite the substantial changes in
cultural policy undergone after the Communist Revolution led by Mao Tse Tung of
1949. '

The I Ching, or Book of Changes, used as an oracle, but also gradually
transformed into a manual on how to conduct wars and public affairs, pre-dates the
11th century BC, and it is seen by many as the first book ever produced?2. Between
770 and 480 BC we find a decimal system for numeration, and it is plausible that by
220 BC counting rods—which we will later describe—are already commonly used for
calculations (Yan and Shiran, 1987, p7). During the first Han Dynasty, in the Western
Han period (206 BC-24 AD), the Zhoubi suanjing, the oldest mathematical classic of
China, appears, and in it we find the Gougu, "Pythagoras' theorem.” During the
Eastern period of the Han Dynasty (25-220 AD), the Nine Chapters on the
Mathematical Art appears, the book which is considered to be "the most important of
all ancient Chinese mathematical books." (Yan and Shiran, 1987, p270) The whole
chronology of Chinese mathematics, can be found in Yan and Shiran (op. cit.,
Appendix 3) and also an excellent description of the Chinese mathematical treatises,
with comments, in Martzloff (1987).

It is only in the 17th century that the Elements of Euclid are translated into
Chinese (by Xu Guanggi and Matteo Ricci, a Jesuit missionary; by 1607 the first six
Books had been translated, while the other Books had to wait until 1856), and Yan and
Shiran (op. cit., p190) call this period "the first entry of Western mathematics into
China." Chinese mathematics certainly interacted with Hindu and Islamic mathematics,
at different periods and to different extents. According to Mikami (1913, p56), the
contact with the Hindus became "official" in 65 AD, when "...the Han Emperor
Ming-Ti dreaming of a 'golden man’ had sent a messenger to India"; Mikami says that

92cG.J ung, the psychoanalyst, took a great interest in the f Ching as a powerful symbolism, which
can be used in our search for an understanding of the mind; in 1949, he wrote a preface to the English
edition of Wilhelm's translation of the J Ching . Jung was particularly interested in the concept of
synchronicity as an "acausal connecting principle.”.
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the Hindus exerted considerable influence in art, literature and, to a lesser extent,
astronomy and "calendrical arts,” but Chinese arithmetic remained unaffected, although
there is clear evidence that Hindu mathematics had been studied by the Chinese93. The
contact with the Arabs can be traced back to the 7th century, through the Tazy
Sarracens (Mikami, op. cit., p98), but it seems that this exchange will intensify only
after the Mongol invasion (1271, the beginning of the Yuan Dynasty of Kublai Khan),
which will affect both Muslims and Chinese (see Martzloff, 1988, p94ff, and Mikami,
1913, p98£f) The possible influence that Mikami, for example, finds from the Arabs, is
always connected with Chinese astronomy. But, Mikami says,

*...we are utterly at a loss when we try to illustrate concretely the influences exercised

from without upon the mathematics of the Chinese.” (op. cit., p108)

The important aspect here, is that although a contact is certain to have occurred,
the actual influence, in the form of directly absorbed methods, translations, or foreign
mathematicians being quoted, is visibly small. As a result, one can safely look at
Chinese mathematics, in particular Chinese arithmetic and "algebra,” as a self-contained
body of knowledge, and reasdnably expect characteristics of Chinese conceptualisation
to apply with some uniformity to different historic periods.

As we will see, the whole of Chinese mathematics leans towards the "concrete";
in relation to number, and several Chinese authors express an understanding of number
that could be easily identified with the Pythagorean view, both in its mystical and in its
ontological aspects. This view however, is, in Chinese mathematics, earlier than
Pythagoras.

SOME ASPECTS OF CHINESE "KNOWING"

Master Chen talks to Rong Fan, a student who could not grasp the principal
idea in his explanation, even after a few days:

"This is because you are not familiar with your own thought. ... you still
have not got things clear. that is to say, you still cannot generalisc what you have
learnt. The method of calculation is very simple to explain, but it is of wide

application. This is because 'man has a wisdom of analogy’, that is to say, after

9311 is far beyond the possibilitics of this disserlation to undertake the study of this historical question,
but the right line of inquiry should be, we think, to examine Hindu and Chinese conceptualisations of
mathematics and try and delermine 1o what exient the Chinese framework could not absorb specific
parts Hindu mathematics.
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understanding a particular line of argument one can infer various kinds of similar
reasoning. ... So by having people learn similar things and observe similar situations
one can find who is intelligent and who is not. To be able to deduce and then to
generalize, that is the mark of an intelligent man. ... If you cannot generalize you have

not learnt well enough." (Yan and Shiran, 1987, p28)

This passage is exemplary of the Chinese way of saying things: don't say too
much, don't explain too much. In the preface to Martzloff (1988), Jacques Gernet says
that this inclination towards allusion and conciseness is well in accord "au génie de leur
langue,” and that the Chinese, on the same basis, "desecrated the stiffness of formal
proofs." Moreover,

“...celte horreur du discursif va de pair avec une predilection pour le concret. Leur
pédagogie mathématique le montre bien, ot le cas particulier suffit & illustrer le général,
oul les comparaisons, les rapprochements, les manipulations de chiffres, les decoupages,
recompositions et retournements de figures permettent de constater sur le champ et de

visu Yexactitud des solutions." (Gernet, in Marizloff, op. cit., pVII)

Argumentation in Chinese mathematics—in particular in commentaries—is
based on methods, for example (i) going from the particular to the general, using a well
chosen example, (ii) reasoning by comparison, transposing the debate to a situation
better known but semantically distinct, (iii) analogies, as in explaining the extraction of
a cube root by evoking the process for extracting the square root, (iv) recourse to
heuristic procedures, as recommending the use of dissection in dealing with geometrical
figures. The closest to the notion of proof that traditional Chinese mathematics gets is
the notion of making visible the mathematical phenomenon (Martzloff, op. cit., p70),
as they are manifest within the tangible things and not within abstract essences.

From this point of view, we should not try to apply the distinction between
"theory"” and “"practice” to Chinese mathematical texts. Martzloff (op. cit., p40)
suggests that instead we use the distinction between "pedagogical tools” for the
former—used to teach the calculation techniques-—and "application manuals” for the
latter-—or, how to employ the calculating techniques®4.

According to Martzloff (op. cit., p48ff), it is possible to group the problems
used in Chinese books into four broad types: (i) Real problems, (ii) Pseudo-real
problems, (iii) Recreational problems, and (iv) Speculative problems. Real problems
are so faithful to the actual situations of the time, that their texts can be used to support

941n all cases, the form of presentation is "statement of problem + numerical solution + statement of
solving procedure,”
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research on the social-economical life of then. Pseudo-real problems are provided to
overcome a situation—well-known to us, mathematical educators—where the real
problems offered only too simple or too complex problems, and which can be better
seen as exercises. With a similar objective were produced the Recreational problems.
Speculative problems are not very abundant, and Martzloff actually says that it is
surprising they existed at all, given the contexmalised nature of Chinese mathematics93,

The evidence on the two last paragraphs must not be taken as meaning that
Chinese mathematics can be reduced to an empirical and utilitarian body of knowledge;
the extent of its achievement goes against such interpretation, providing far more than
the "necessary” for practical uses?6. We must understand, instead, that Chinese
mathematics is contextualised in a slightly different sense, namely, that mathematical
concepts and objects are not elaborated independently of the problems they are intended
to solve:

"Les termes chinois ne sont pas définis in abstracto & l'issue de procédures
platoniciennes, mais se trouvent plutdt engagés dans une dynamique incessante qui les

rend objet de continuelles négotiations de sens.” (Martzloff, op. cit., pS9)

In view of such a conceptualisation, the damage caused by "translating"
Chinese mathematics into our modern algebraic notation is immense, not only because
we will be attaching to the objects it denotes a generality they do not necessarily have,
but also, and more misleading, we will introduce a permanence of that object across
the whole of mathematics, which many times, as will see, does not exist.

SOME ASPECTS OF CHINESE MATHEMATICS

The unique feature of Chinese mathematics, from a very early time, is the
pervasive use of counting rods, which cannot be traced back to any other mathematical
culture?’. Those rods were "...small bamboo rods. Ancient Chinese mathematicians
operated with these short bamboo rods by arranging them into different configurations
to represent numbers and then performed calculations ﬁsing these rods." (Yan and
Shiran, 1987, p6) The extent to which the calculating rods are characteristically linked

95" Aucun auteur chinois ne se préoccupe de ‘théorie des nombres’ (sauf tardivement, au 19¢ sidcle),
Certes, il est bien exact que dans maintes ocuvres mathématiques chinoses on trouve des triangles
rectangles dont les longueurs des c6tés sont des nombres entiers ... Mais aucun auteur chinois n'écrit
jamais explicitement que la determination de triangles rectangles en nombres entiers constitue e but de
ses recherches,” (Martzloff, op.cit., p280)

%Neugebauer, quoted by Martzloff (op. cit., p42) says that, "The mathematical requirements for even
the most developed economic structures of antiquity can be satisfied with elementary household
arithmetic which no mathematician would call mathematics.”

97ct. Mikami (op. cit., p99)
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to Chinese mathematics, is indicated by the fact that the specific names used to
designate "mathematics" are many times a composition involving the unit suan, which
originally designates "a set of concrete objects used to calculate—the rods."” (Martzloff,
op. cit., p36)%8

n: ll!! :.1!En ;jsﬂ
First Serics O 1 11 011
Second Series —_—= = = E 1 L # é

The First Series is used for digits corresponding 1o even powers of 10: 1, 100, 10000, eic..
The Second Series is used for digitis corresponding to odd powers of ten: 10, 1000, etc..

— T =18 =T -z MekT 396

The possible ambiguity in =~ [[ (18 or 1800) is resolved, initially, by recourse to the

context of the problem (see Martzloff, op. cit., p17(}). From the 12-13th century, the use of
a small circle to denote the "empty" position, is adopted:

— THo o =180 — OOTT =1008

To avoid the use of more than three "rods” repeated, some special notations are introduced
(op. cit., p171)

The use of counting rods had at least two consequences of immediate
importance: (i) the natural development of the practice of recording numbers and
calculating processes using faithful copies of the arrangements with the rods, 2 step
which allows direct calculation even in the absence of the rods; and (ii) as a
consequence, the introduction of a matrix-like notation as a standard form of
representation, which assumes different roles in different contexts. The "written
counting boards" are used to represent fractions (Yan and Shiran, op. cit., p17), the
elements in the process of extracting the square root (Martzloff, op. cit., p213), or,ina
form very similar to our "matrix of coefficients,” the basic setting in the process of
solving sets of simultaneous linear equations (Yan and Shiran, op. cit., p47).

98yan and Shiran (op. cit., p11) add that, "Calculating by means of counting rods is the key to
understanding the ntathematics of ancient China."
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Martzloff (op. cit., p181ff) shows that a number of Chinese texts indicate that™
the idea of a decimal notation probably arose as a generalisation of the practice of
calculating with counting rods%; decimal numbers, however, are almost always linked
to units of measurement, and a number as 9.62 would never appear in itself, as a
"pure” number, but "comme; 9¢ 60 20, ou les ¢ représentent des caratéres chinois
désignant des unités concrétes," ie, the ¢ can be, for example, the equivalent of "metre,
decimetre, centimetre.” The actual practice in using the "rods notation," was to indicate
only the principal unit, in a way that resembles our use of the decimal point.

The Chinese developed a method to solve sets of simultaneous linear equations,
called the Fang Cheng—Method of Rectangular Arrays, which is, in form, Gauss's
elimination method. The fang cheng is first introduced in the Nine Chapters on the
Mathematical Arts (aronnd 200 AD), and in the same treatise are introduced the notions
of positive and negative numbers, and the methods for adding and subtracting them
{Yan and Shiran, op. cit., p46). Negative numbers are used to represent, for example,
"paying out" and positive numbers to represent "receiving money." In representing the
coefficients, either rods with different cross sections or colours—when using the actual
rods—or different colours, special marks, or writing the rods obliquely—in the case of
the written form— are used to distinguish positive and negative numbers.

Negative numbers, however, are never to be found, in Chinese mathematics, in
the statement of a problem, or as a solution to a problem: they belong entirely to the
context of the method, without which it would be impracticable!®, The same is true of
the zero, which use seems to be initially linked to representing the absence of a digit, or
in this case, of a coefficient. Martzloff (op. cit., p186) notes that the use of negative
numbers was not transferred to other mathematical contexts in which their use would
allow a much greater simplicity of treatment. This aspect of Chinese mathematics is of
exireme interest to us, because the same kind of strong link between the acceptance of
specific mathematical objects and specific mathematical contexts can be observed in the
mathematical behaviour of learners.

The fang cheng did not directly use multiplication and division, only addition
and subtraction, no matter the size of the numbers involved; it is natural, thus—in the
perspective of the "method-restricted” approach of Chinese mathematics——that only
rules involving addition and subtraction of positive and negative numbers are given,

991 ¢ Xiahou Yang suanjing ... explique que, pour multiplier cu diviser un nombre par 10, 100,
1000, 10000, il suffit de faire avancer ou bien de faire reculer les baguettes qui le représentent de 1, 2,
3, 4 rangs decimaux sur la table & compter.”

100Martz10ff offers a way of emphasising this aspect, by noticing that negative numbers appear in
Chinese mathematics before than in any other mathematical culture: "Cela peut sembler paradoxal dans
la mesure ol en Chine plus que partout ailleurs la notion de nombre s'est toujours inscrite dans le
concret." (1988, p185)
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including those involving zero. In the 3rd century AD, Liu Hui, a commentator on the
Nine Chapters... proposed a solution to avoid the possibly huge number of
subtractions to be performed in the fang cheng, by using a "cross multiplication”
similar to that used in school algebra solutions; despite its practical advantage, Liu
Hui's method faced the problem of overcoming the "debts-credit” interpretation of
negative and positive numbers, which seriously hindered the acceptance of their
multiplication; for many centuries, Liu Hui's version of the fang cheng is not widely
accepted. It is only in 1299, and also in the context of the "refined” fang cheng, that the
rules for the multiplication of positive and negative numbers are stated, without—as
one would expect—any justification.

There is another development we want to examine. In the Nine Chapters...,
methods are given for the extraction of the square and cube roots of a number. Both
methods depend on the positional decimal notation, and also on the equalities

(a+b)? = a%+2ab+b? = a®+ (2a+b)b and
(a+b)? = @3+3a%b+3ab%+6° = a3+[3a%+3(a+b)b)b

and are essentially the same methods used today. It is important to notice that those
methods were based on a geometric perception of the equalities above (Martzloff, op.
cit., p210ff; Yan and Shiran, op. cit., p53)101,

At that point, the important technical achievement was to extend the method and
apply it to the numerical solution of quadratic and cubic equations (see Yan and Shiran,
op. cit., p52ff). In the middle of the 11th century, Jia Xian introduces another method
for extracting square and cube roots, which is easily generalised for extracting roots of
any degree (op. cit., p120). The extension of the method of Jia Xian to be used to the
numerical solution of higher degree polynomial equations, required the acceptance
within this method, of negative coefficients in all positions, where before, in the
methods for the extraction of square and cube roots, and in their extension to solve
quadratic and cubic equations, the coefficients were required to be positive. The
extension is achieved between the second half of the 12th century and the first half of
the 13th century (op. cit., p128).

The extension of the methods of Jia Xian, then, involves two aspects worth
highlighting: (i) the acceptance of negative coefficients is local and belongs to the

101Tphe generic term to indicale the extraction of roots, kaifang, literally means "to open",
dissect", “to dissociate”, "to decompose”, the square or the cube, and the expressions usecl to desngnaw
seme of the coefficients used in the calculations use the terms yu and lian, that mean “corner” and
"border", respecuvely Manzloff says lhat "Rlcn de cela n'est gralultc Clest Ja marque indélibile du

" (1988, p211, our cmphasis)
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method—although by that time negative coefficients had been used in the fang cheng
for more than a thousand years; and (ii) the development of a general method for
solving polynomial equations numerically implies the abandonment of the geometrical
intuition, certainly in favour of a numerical one—based on the possible generality of the
calculating board.

Point (i) simply reinforces an aspect of Chinese mathematics we had already
examined, '

Point (ii), however, brings a new insight. We can look at the development of
Chinese mathematics in two directions. It certainly lacks a "horizontal" generalisation,
ie, the concepts and objects of one methed do not naturally "spill” into other methods.
The extension of Jia Xian's method however, takes a "vertical” line, that of a
development within the method. If we examine the conceptual changes involved, it is
clear that there is an "arithmetisation" of the problem-—in quotes to avoid confusing it
with the arithmetisation of Islamic algebra, at the same time the form of the method is
to be preserved, ie, the type of manipulation involving the coefficients as "digits." It is
because this 1s firmly established that the aceeptance of negative coefficients can occur:
because the method will still be recognisable!02,

In relation to the notation used in Chinese "algebra”, it is clear that the the
counting board and its written counterpart provide a notational form that is very strong
in supporting the development of the methods of Chinese arithmetic-algebra. In relation
to the fang cheng, for example, the number of "unknowns" is not limited by any
notational restriction, as the board can be extended at will; through the use of the board,
any numerical example is made perfectly general, specially given the freedom in the use
of negative coefficients. In other cases it is not so, until related conceptual problems are
resolved, but the board-form remains in use. Martzloff (op. cit., p249ff) also points out
to the conciseness of the Chinese language, as offering a compact description of
mathematical statements. At the beginning of the 18th century, there is a first attempt at
introducing Western algebra in China, through the efforts of Jesuit missionaries, but it
fails. On a second attempt, the missionaries develop a new notational system, which,
however, is not superior to those employed by 13th century Chinese mathematicians,
and is thus refused. As a result, one finds that around 1850 Chinese mathematics were
practically ignoring all forms of modern algebraic symbolism (op. cit., p196).

In Chinese mathematics, notation and nomenclature, as much as mathematical
concepts-and objects, belong, to a great extent, to each method, and the resistance to

102Marizloff (op. cit., p218), says that the historical evidence available is not enough to allow us 1o
understand which type of generalisation the passage from 2 or 3 dimensions to higher dimensions was
involved in Chinese mathematics. We think that although not offering a full answer, our approach
offers a fruitful line of investigation.
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accepting Western algebraic notation probably reflects the rejection of a uniformity and
“decontextualisation"—mathematical contexts, that is—which does not fit into the
framework of Chinese mathematics.

CONCLUSIONS

In Chinese mathematics, there is a lack of intention to investigate the
mathematical instruments that make possible, extend, and justify the methods—eg, the
algebraic calculus. On the other hand, although numerical problems originate in real or
pseudo-real statements, their treatment is numerical—as opposed to geometric, for
example. The tension between the "concreteness” of the problems and the mathematical
freedom of the methods, begins to be resolved as soon as negative number are admitted
into the fang cheng, implying a degree of internalism; the analiticity of the method is to
be seen, for example, in the fact that after the "elimination” is completed, the values of
the unknown that have been determined are "substituted back," ie, the "unknown" is
indeed represented in the configuration using the "written counting board."” Although
algebra is not constituted into a theory, algebraic thinking is behind the development of
many of the methods.

From the point of view of the leamning of algebra-—and, most probably, from
the point of view of the learning of other pieces of mathematical knowledge—the most
relevant aspect of Chinese mathematics is the independence between what we termed
horizontal and vertical development. It is a crucial point, in relation to our research
question, that this vertical development is by no means sufficient to guarantee that a
horizontal development will also occur; the question naturally arises as to which are the
conditions under which the vertical development holds at least a good chance of
resulting in horizontal development. Given the example of Chinese mathematics, it
seems that the condition which was lacking there, and which establishment should be a
target of the teaching of algebra, is the notion of a theory, ie, a body of knowledge that
aims at itself, no matter what the original motivations might be, and that is intended to
amplify the possibilities of accomplishing what begins as an intention scarcely realised.
In the case of algebraic thinking, this intention may begin as that of modelling different
problems with numbers, and from there evolving to an internal way of treating this
numerical model; or it may begin as the intention of examining what can be found in
common in locally distinct methods.

The existence of a "standard" notational form-—such as the "written calculating

board"-—that is unable to provide, by its form, the link between the different methods
in Chinese mathematics, points out to the fact, already examined in previous sections of
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this chapter—but here strongly highlighted—that the use of any notation, in any
context, can only be understood in view of an understanding of the objects intended by
that notation; in other words, but with a slight twist, the uniformity of notation does not
guarantee the generality of the object if intends, nor the general applicability of the
method it describes. We have pointed out, earlier in this section, that the "translation”
of Chinese mathematics into our algebraic notation would introduce a horizontal reach
that the concepts and objects do not necessarily have. From the point of view of
mathematical education, the forced and undue horizontalisation of mathematical
concepts and objects—be it through a notational uniformity or through an idealistic,
intention-imposing, reading of the learner's knowledge—can lead to tensions which
remain hidden and are difficult to locate and resolve.

3.6 ASPECTS OF THE DEVELOPMENT OF AL GEBRA IN EUROPE

INTRODUCTION

It would be totally beyond the possibilities of this dissertation, to attempt even a
modestly thorough examination of the historical development of algebra in Western
__culture, from the Middle Ages onwards. A number of books have covered the subject,
from different perspectives and in varying depth: in Kline (1990), we find what is
probably the most complete survey of the historical development of the whole of
mathematics, and it provides substantial material for one to investigate the development
of algebra within the various branches of mathematics; Bottazzini (1986) and Crowe
(1967) deal extensively with the history of branches of mathematics that are closely
connected with the development of algebra, the former with Calculus, the latter with
Vectorial Analysis; Novy (1973), van der Waerden (1985), and Klein (1968), ali
examine the historical development of algebra, but from points of view which are quite
distinct, and to a great extent complementary.

Our approach will consist in examining, with the support of a few selected
examples, two aspects of the development of algebra: (i) its gradual internalisation, ie,
the abandonment of extrasystemic interpretations of algebra as a way of justifying its
procedures; and, (ii) the development of new forms of notation.

As we have seen in the previous sections, in each of the mathematical cultures
examined the tension between method and object was dealt with differently. In Greek
mathematics, the object is always established by its ontology, and the methods develop
around those ontologically determined objects; in Islamic mathematics, the ontological
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commitment is much weaker, but the tension still exists, and can be seen in the
dependence of its procedures on geometrical models; in Chinese mathematics, the
methods are local, and mathematical objects and concepts "belong,” to a great extent, to
each method; finally, Hindu mathematics presents itself with a much greater technical
freedom than the other three, but fail to examine and organise the body of knowledge
they had produced or absorbed, and the tension stays completely hidden, as the focus
remains on simply providing "solving formulas” for specific problems103,

We shall now investigate how this tension presents itself and is eventually
resolved in Western mathematics.

THE NOTION OF NUMBER AND THE SOLUTION OF EQUATIONS

Historians of mathematics generally agree that the first name worth mentioning
in European Middle Ages, is that of Fibonacci (b. 1170)1%4. In a number of studies, the
similarity between Fibonacci's work and that of Islamic mathematicians has been
pointed outl03, Fibonacci is also mentioned by Cardano as "a trustworthy source” on
the "art of Mahomet the son of Moses the Arab [al-Khwarizmi]," (Cardano, 1968, p7)
and it is known that he travelled extensively and studied Islamic mathematics in North
Africa and other places (Cf. Fibonacci, 1987, pxvi).

His two main works are the Liber Abacci and the Book of Squares. The Liber
Abacci is a book on arithmetic and algebra, which was for a long time a standard
textbook and introduced the Hindu-Arabic notation for numbers in Europel06; the Book
of Squares is a collection of propositions on square numbers and indeterminate
analysis. As opposed to Diophantus' Arithmetica, Fibonacci's book always provides
solutions that are general not only in content, but also in form (letters are used,
sometimes as in denoting a segment of line, eg, .ab.), but they are, however,
synthetical, the problems are solved with little recourse to geometric arguments!%7. He
was not troubled by surds.

1035ce van der Waerden (1985, p190).

104¢f, van der Waerden (1985), M. Kline (1990).

105For a brief survey of those studies, see Sigler's preface 1o the Book of Squares (Fibonacci, 1987).
1064 fow excerpls of the Liber Abacci, wanstated into English, can be found in Fauvel and Gray
(1987).

1071 the preface 10 his edition of the Book of Squares (Fibonacci, 1987), Sigler says that, "The
geometrical algebra used in Leonardo [Pisano, Fibonacci] is that presented by Euclid in the
Elements..." This "geometrical algebra” must be understood in the sense of the numerical
reinterpretation—--already undertaken in Islamic algebra—of Euclid's Elements; the geometric diagrams
used in the Book of Squares are rarely more than a support for the letters used in the text, or support
for a combinatorial argument. In relation to Fibonacci's use of lines to represent numbers, Woepcke
(1982, p27, footnote) says that, "Fibonacci se sert de ces lignes uniquement pour désigner, d'une
maniére plus concise, les quantités qui sont F'objet ou les résultat des opérations algébrigues.”
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By the time of the European Renaissance, the efforts in algebra are directed
towards the algebraic solution of cubic and quartic equations, and it is in this context
that Cardano publishes, in 1545, his Ars Magna (Cardano, 1968).

Cardano's book is throughout concerned with solving quadratic and cubic
equations, and although also presenting and solving geometric and "real-life" problems,
it is clear that the book primarily intends the mathematical procedures. Irrationals are
treated effortless, and both algebraic treatment of equations and geometrical
demonstrations of solving rules are found in the book. We think, however, that it is in
the contents of Chapter XXXVII ("On the Rule for Postulating a Negative"), which
represents a remarkable intellectual achievement for the time, that we will find the theme
through which we can follow the development of algebra in the Western culture, at the
same time it contains the seed of the approach by which this difficulty is finally solved.

Under the heading of Rule II (op. cit., p219), Cardano solves the problem of
dividing 10 into two parts such that their product is 40. He says that "it is clear that this
case is impossible,"108 but, nevertheless, he takes on the problem, applies the
procedure for solving the quadratic equation to which the problem is reduced, and as a
result reaches the expressions 5 + v-15 and 5 - ¥-15 (199), To check that those two
expressions indeed verify the problems conditions, Cardano simply multiply them
arithmetically: (5 +V-15)(5 - ¥-15) = 5.5 - 5-15 + 5-V-15 - (V-15)2, which, of
course produces  25-(-15) = 40. It is not shown that the sum of the two expressions
is 10. Witmer, the translator of (Cardano, op. cit.), observes that the original
expression accompanying the multiplication, dimmissis incruciationibus, can mean both

"putting aside the mental tortures," which is used in the main text, but also "the
cross-multiples having cancelled out," used in Smith (1959, p202), a play on words.
Nowhere else in the Ars Magna square roots of negative numbers are
mentioned, and the subject is left to one of the last chapters of the book (which is in
forty chapters). Van der Waerden (1985, p56) points out that in Chapter I, where the
number of positive and negative roots of cubic equations are discussed, Cardano
carefully avoids the imaginaries—which appear in the casus irreducibilis when the
solution is done by radicals—by an adequate choice of the coefficients, and Sanford (in
Smith, 1959, p201) points out that "Cardano. ..spoke of the complex roots of a certain
equation as 'impossible’.” Negative roots are normally accepted, but negative numbers
are called "fictitious” numbers, as opposed to "true” (positive) ones (Cardano, op. cit.,
p15); a problem which cannot be solved "with" a positive nor "with" a negative number

is a "false problem." (op. cit., p217).

108Pcmsibly because the maximum real value is oblained by squaring half of the ten,
094 is clear that the geometric demonstration of the solving formulas does not apply any longer,
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Cardano's "play on words" would be, then, an indication of the tension
between the "ontological” impossibility and the "operational” reality of imaginary
quantities in the mind of the mathematician; an internal meaning is given to the
otherwise unintelligible V-1, and it is acceptable enough to deserve mention in the Ars
Magna, but not to be normally used in the rest of the book, where it would provide
Cardano with the means to achieve 2 much greater conciseness and unity for the theory
of quadratic and cubic equations. At the same time he acknowledges some form of
"legitimacy" for the imaginary quantities, and together with the "sophistication” of the
subject, Cardano asserts its uselessness (op. cit., p220)110,

No ontology of imaginary quantities was available, and the manipulation of
those "things" did, in fact, simply follow the rules of the arithmetic of real numbers, ie,
they had a purely symbolic character. It is interesting to observe that their "right of
existence", in Bombelli and Cardano, for example, is tied to the algebraic method, as
negatives were tied to the fang cheng method in Chinese mathematics. But with the
Jang cheng, they are introduced only as a necessary element of the method, whereas in
the case of complex numbers, they are at the same time a necessary element of the
method and the result of exploring the possibilities of the method, ie, a theoretical
result.

There is another aspect of the Ars Magna which is of interest. Cardano
certainly had some insight into the relationship between the degree of a polynomial
equation and the number of roots it has; this insight, however, was not entirely
explored by him. First, because of the need to fully acknowledge complex roots, but
also because of the need to acknowledge zero as a possible root. Second, and more
important from the point of view of our research, there was the obstacle of the multiple
roots,

The notion of "root” in Cardano—and in all algebraists before him, and also,
for some time, after him—is thoroughly associated to that of a number which satisfies
the arithmetical relationship proposed in the equation; the notion of root that allows for
the understanding of multiple roots, is that of the decomposition of a polynomial into
linear factors: x2+6x+9=(x+3)(x+3), and -3 is a double root of x2+6x+9=0. The
former notion is concerned only with an equation as a predicate, while in the latter it is

1 lOCompam Cardano's opinion with Girard, in his L'frvention nouvelle en l'algébre (1629) where he
says that, "One could say: Of what use are these impossible solutions [complex roots]? I answer: For
three (hings — for the certitude of the general rules, for their utility, and because there are no other
solutions." {quoted in M. Kline, 1990, p253)
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the root as part of an arithmetical articulation, that is central. The full recognition of
multiple roots seems to be associated with the appearance of Coordinate Geometry111,

This brief examination of the work of Cardano indicates the two trails to be
pursued in our investigation: the transformation of the notion of number, and the
changes in the understanding of the algebraic activity.

In 1545, Cardano accepted negative numbers, to the extent of having them as
solutions of equations, and he also found a place for imaginary quantities in his work.

In relation to negative numbers, the development is far from "linear"; still
around the time of Cardano, Vieta (1540-1603) completely rejected negative numbers,
but Harriot (1560-1621) would accept a negative number "by itself on one side of an
equation,” (Kline, 1990, p252); Stifel called them "absurd,” but Bombelli (born c.
1530) decided "to consider the majority of the authors who up to now have written
about [algebra], so I can fill in what they have missed out" (in Fauvel and Gray, 1987,
p263) and produced not only an understanding of negative numbers, and rules to
operate with them by themselves—and not only as terms in expressions—but also
explicit rules to operate with "pfu di meno," the square root of minus one (Fauvel and
Gray, op. cit., p.265).

Still many centuries ahead, in the first half of the 19th century, the debate about
whether negative numbers were "acceptable” was not yet settled when Peacock's
Symbolical Algebra appears. Pycior (1982, p397) says that,

"...even after exposure to De Morgan's defense of the negative and imaginaries,
Frend...clung to his 'contentual’ view of the mathematical sciences, according to which

symbols stood only for clear and distinct ideas.”

The objections to negative number were altogether simple: "How can a quantity
be less than zero?" M. Kline mentions a more sophisticate objection and a consequence:

11Montucla (quoted in a footnote by the translator, in Cardano, op. cit,, p13) says that "Simple
arithmetic would have thrown no light on the subject and it is only the application of algebra to curves
which can make one understand the distinction of which we speak.” As a matter of fact, it is only after
Descartes and Fermat, that the Fundamental Theorem of Algebra is stated in full, although in 1629
Girard had asserted, without proving, that any complete algebraic equation—ie, one where none of the
coefficients is zero—has as many solutions as the exponent of the highest term; the distinctive aspect
of Girard's assertion, is that he "pointed out that if an equation adsnils fewer roots than its degree
indicates, it is useful to introduce as many impossible [ie, complex]} solutions as will make the total
number of roots and impossible solutions equal the degree of the equation” (C.R. Adams, in Smith,
1959, p292).
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"An interesting argument against negative numbers was given by Antoine Arnavld
{1612-94), a theologian and mathematician who was a close friend of Pascal. Arnauld
questioned that -1:1=1:-1 because, he said, -1 is less than +1; hence, How could a
smaller be to a greater as a greater to a smaller? The problem was discussed by many
men. In 1712 Leibniz agreed that there was a valid objection but argued that one can
calculate with such proporﬁons-becausc their form is correct, just as one calculates with

imaginary quantities." (1990, p252)

There are three points of interest here. First, the whole objection arises because
the proportion in question is examined from the point of view of a concept of order
which takes "being a part” for "being smaller," indicating an incorrect understanding of
the structure of the real numbers!12. Second, because the intelligibility of negative
numbers had, since ancient cultures, been resolved by an appeal to order, the-
possibility of understanding their algebraic properties was serious hindered; we think
that this is a most valuable insight for mathematical education, as it suggests that careful
attention should be paid to distinguishing those two mathematical aspects of number.
Third, although apparently unaware of the difficulties above, Leibniz "settles” the
question by appealing to the internal consistency of the calculations done with such
"unreal” numbers, an approach which, in fact, corresponds to assuming that the
algebraic structure alone should provide intelligibility, ie, meaning, for those numbers;
that he does not distinguish, from this point of view, negative and complex numbers,
serves to clarify his approach .

At this point, it should be perfectly clear that the problem with negative numbers
was that they were ontologically unsupported. But if in Greek mathematics, irrational
numbers were not numbers, precisely because an extension of the accepted ontology
for whole numbers could not be provided that accounted for the
"incommensurability"— they resisted being counted—how come such objections were
not raised against them in Europe?

The answer seems to be, that there had been, as we saw in relation to the
Hindus and Chinese and in relation to Islamic mathematics, a substitution of a
“calculating” understanding for the Greek-style ontology, but also, in the process, an
association between positive numbers and geometric magnitudes was established, the
"concreteness” of numbers tightly linked to the geometric figures themselves, as a
representation of the continuum13:114, Much of Stevin's (¢.1548-¢1620) criticism of

112gee Novy (1973, p16ff), where it is pointed out that based on axioms derived from a geometric
intuition, one arrives at statements such as a>b = a+i>b+i, see also Smith (1959, p59), where it can
be seen that Wessel was aware of this difficulty and that he had correctly overcome it.

113M, Kline (1990, p2511f) says that around 1650, "... Pascal and Barrow said that a number such as

V3 can be understood only as a geometric magnitude; irrational numbers are mere symbols that have
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the Greek concept of number, is based on the properties of the Hindu-Arabic notational
system, and he finds it worth to put forward and justifying the thesis that "one" is
indeed a number, and also that "zero" is the "true and natural beginning,” a "zero" that
is totally identified with its notation, and only within the notational system acquires its
meaning (Klein, 1968, p191ff). Wallis (1616-1703) had no restrictions against
irrationals, and regarded Book V of the Elements as arithmetical in nature, while
Descartes (1596-1650) accepted them as independent, but pointed out their adequacy to
represent continuous magnitudes (Cf. M. Kline, 1990, p252).

The problem with complex numbers presented a much stronger challenge.

In Cardano, complex numbers are dealt with intzernally, but in Bombelli we find
a much more dramatic situation,

He solves the equation

B=15x+4 (D)

following Cardano's rule, and arrives at

3 3
x =V24V-121 + V2-¥y-121 (D)

It is obvious, however, that x=4 is a solution of (I). Van der Waerden (1985)
says that Bombelli,

"...now investigates whether he can attach a meaning to the cubic root of complex
number. More precisely, he tries to equate the first cube root [in (II)] with a complex

number p + ﬁ“

and he finally arrives at,

3 ,
AT =2+ T am

Bombelli's resuit raises an interesting question. In the case of linear equation, if
the solving procedure results in, for example, x+10=5, a person that does not conceive

no existence independent of continuous geometrical magnitude, and the logic of operations with
irrationals must be justified by the Eudoxian theory of magnifudes." (our emphasis)

N4gy1er (1840, p2) says that, "...a number is nothing but the proportion of one magnitude to another
arbitrarily assumed as the unit,..From this it appears, that all magnitudes may be expressed in
numbers..." :
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negative numbers may rightly say, "the original equation has no solution"; in the case
of quadratic equations, the situation is completely similar, because a negative
discriminant, for example, immediately means that the original equation has no
solution. In both cases the process is simply reduced to that case in analysis in which
one arrives, from the initial suppositions, at a false statement, and the problem is found
to be impossible.

With cubic equations a much different situation arises. Suppose, again, a
person that does not conceive of imaginary quantities, and that person solves, as
Bombelli did, equation (I) and arrives at the expression (II). Following the same
reasoning as the one used with linear and quadratic equations, (I) has no real solution.
But it has, and we are now faced with the fact that the method used—which is
thoroughly based on clear assumptions, such as the possibility of substitutions and the
solution of auxiliary quadratics—is not good enough to give the—already found by
inspection—solution.

Bombelli's solution of the dilemma is paradigmatic of the way by which algebra
will develop in Europe, and it involves two important steps: (i) to assume that the
method of solution as an invariant, ie, to postulate that it indeed produces a solution if
one exists; and, (ii) as a solution exists, and the method is correct, the expression
reached must be transformable into a "recognisable" form. In both aspects, it is
necessary that the reasoning be conducted internally—as it is the application of the
method that produces the "discrepancy"~-and arithmetically—as one is attempting to
preserve the consistency of a method based on properties of the arithmetical operations.
Finally, the process by which the expressions in (II) are given meaning, is aralytical,
as one starts with the presupposition of two arithmetical articulations being equal, and
from there deriving the conditions that make the equality true. Above all, it is the
preservation of meaning that is aimed at.

It is clear that the concept of equality has to undergo a substantial change if this
process is to be possible. The notion of calculation cannot be any longer that of the
possibility of applying algorithms that produce an answer; it is, instead, that of
producing another expression which has a different arithmetical articulation but which
can be substituted for the original one in all cases where it would belong!!15. In
Bombelli and Cardano, this understanding is only anticipated, and it is not introduced
as a paradigm for algebra. In the 20th century, however, we read in A, Robinson
(1951, p4):

115This notion of equality applies, of course, to the solution of equations as we find in Diophantus
and al-Khwarizmi, but it is important to emphasise that this was not the intended understanding in
those mathematicians,
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“1.5. Definition of Equality. We shall say that a relation of equality is defined in a
given system of axioms if it includes a relation E(x,y) which is symmetrical, reflexive
and transitive, and such that every relation F(x1,...X,) incladed in the system, it can be
proved that equal objects can be substituted for one another as arguments,
(x1)e--Gep)1)--(yn) {EE(1,71) A E(x2.¥2) A ... A E(xpyn)l D

[F(x1,....x0) = F(¥15-2.¥0)]
where A and 5 denote conjunction and implication respectively.”

Although the technical development was available, the situation was not
satisfactory, because of the lack of "logical explanation” for the imaginary quantities.

Descartes rejected complex roots of equations because although negative roots
could be made positive by a suitable transformation of the equations, that is not the case
with complex roots, and Newton (1642-1727) identified the existence of physical or
geometrical solutions with the existence of non-complex roots for the corresponding
equation. '

The usefulness of complex numbers in algebra was gradually established, and
to refuse them simply because they did not correspond to anything “in the real world”
was to become a lost cause. However, mathematicians were still searching for a model
that would render them more "acceptable.” Argand (1768-1822) points out that his
geometric representation of complex numbers!16

"...tend, premiérement, 3 donner une signification intelligible & des expressions qu'on
était forcé d'admettre dans I'analyse, mais qu'on n'avait pas cru jusqu'ici pouvoir

rapporter & aucune quantitité conue et évaluable.” (Novy, 1973, pi20)

and Gauss gives a geometric interpretation of complex numbers, but never speaks of
calculating with line segments or vectors. (op. cit., p123)117:118

Warren (1829) carefully examined and discussed the objections held against
imaginary numbers, starting with the observation that "imaginary 'quantities’ were
capable of undergoing operations analogous to those upon ordinary quantities.” (Nagel,
1935, p444) His conclusion was that "the operations of algebra were more
comprehensive than the definitions and fundamental principles [of the ordinary
quantities]” (ibid.) Warren further explains that imaginary numbers are a sign of

16gee, for example, Abbot (1985, p11ff)
117Gauss prefers, instead, the form a+bi for complex numbers,

18¢rowe (1967, p26) says that Gauss rejected the geometric interpretation of complex numbers
probably because he had already discovered non-Euclidean geometry.
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impossibility only in the same sense that in a problem which does not admit a fractional
answer, to arrive at an equation which admits only fractional roots is a sign of
impossibility. According to Nagel, this step shows that "impossible" has to be taken as
a relative term, and that the question of "impossibility” is not to be settled before any
interpretation is given to the algebraic result,

Another approach worth considering is that of Hamilton (1805-1865).
Hamilton's project was to provide the science of algebra with firm foundations!19, or,
in his own words, to establish it as "...independent...[]and] deduced by valid
reasonings from its own intuitive principles..." as Eunclid had done for geometry.
(Crowe, 1967, p24). Following, it appears, Kant's assertion of time and space as the
two a priori given categories of knowledge, and as space provides the intuition for
geometry, Hamilton states that time provides the intuition for algebra, and attempts to
develop the number system on that basis (ibid.). Technically, however, he defines
complex numbers as being ordered pairs of real numbers, a treatment which, we think,
requires no further explanation. It is clear that this treatment reduces the intelligibility of
complex numbers to that of real numbers.

Although clearly different, the three approaches!20 converge in a very important
aspect. In none of the cases the right to use the imaginary in calculations, ie, their
legitimacy, is questioned; what is really being attempted is to provide a model for the
imaginary quantities from which the calculations with them can be safely justified, as
the application of the definition of square root results paradoxical in their casel?!,
indicating that the traditional intuition about numbers is not enoughl22, There is a
difference between providing the ontology—as the Greeks understood their ontology
of number—and providing a foundation. In the former case the very nature of the
object is determined, and from there, what can be done with it; it is not the case of
reducing, for example, number, 1o other intelligible things, but of determining its very
essence, of reaching its being. To provide a foundation, on the other hand, aims

119¢e distinguished three understandings of algebra: as a practical Art, the Language of Algebra, and
algebra as a Science (Cf. Crowe, 1967, p23)

1205 providing a visual image for them, and at the same time reducing their arithmetic to
"calculable,” numbers (Argand and Gauss); (ii) to give "autonomy” 1o the arithmetical operations, and
admit that they produce more then what they were originally intended 1o, and it is precisely for this
reason that the "monsters” they generate behave, under them, exactly as the typical numbers it
originally intended; and, (jii) showing that their structure is perfectly acceptable by finding another—
numerical-— interpretation of the complex numbers which does not hurt the prevailing numerical
intuition,

121 Ag the squarc of a number cannot result in a negative number,

122wWarren's quoted statement implies that the original intuition has 1o be abandoned, and, as a
consequence, the operations must be studied in themselves, instead of trying to make sense of the
different types of number scparately.
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precisely at making the object intelligible by showing how it can be construed from
other intelligible concepts. An ontology intends "what it is”, while a foundation intends
"how it works". Hamilton's approach is exemplary of a foundational effort, as his
construction does not directly link the square of y-1 and -1 as they appear in arithmetic
and algebra, but it rather shows that there exists an intelligible system in which there is
an element which "works" as -1 and another which "works" as -1, and that the latter
does not depend on the notion of an area with negative value. -

In the case of the Greek ontology for number, we saw that it precluded any
scientific treatment of fractions as such, and even in Diophantus they must be
understood as "a number of fractional parts," and those fractional parts understood as
units, not as true parts of a unit, and there was no way in which numbers and
incommensurability could be articulated together. In the case of the models for
providing intelligibility for complex numbers, the articulation between them and real
numbers is established by showing that a in restricted part of the model the
"behaviour," or to put it in modern terms, the structure, of real numbers, was present.

Seen in the context of mathematical education, this distinction suggests that we
examine the difficulties faced by the learners from this point of view, ie, mathematical
objects and concepts ontologically determined, and given a name, may constitute an
obstacle for the learning of objects and concepts that "go under the same name” but do
not fit into the ontology.

THE DEVELOPMENT OF THE ALGEBRAIC NOTATION AND VIETA'S ANALYTICAL ART

Our concern with algebraic notation, here, will be particularly focused on the
use of letters to designate both known and unknown numbers in arithmetico-algebraic
expressions. Apart from the importance of this notation as a powerful tool which
"reduces the cognitive strain of keeping the whole relevant information accessible,"
(Skemp, 1987, p79), its development also reflects changes in conceptual
understanding.

Of the four non-European mathematical cultures we have examined in the
previous sections, only in Islamic mathematics we find a "theoretical” treatment of
algebra, both in the sense that equations are studied in themselves and apart from
problems to solve, but also in the sense that the means to deal algebraically with those
equations are investigated. In all four cases, however, equations always intend the
determination of a number or numbers, that are somewhat "hidden" in them.
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We can quote Euler saying, in 1770, that

"The principal object of Algebra...is to determine the value of quantities that were
before unknown; and this is obtained by considering attentively the conditions given,
which are always expressed in known numbers, For this reason, Algebra has been
defined, The science which teaches how to determine unknown quantities by means of
those that are known." (Euler, 1840, p186)

and Gauss, in 1801, in the preface to his Disquisitiones Arithmeticee, saying that
algebra is "the art of reducing and solving equations.” (Gauss, 1986, pxvii)

The whole of Jacob Klein's book Greek Mathematical Thought and the Origin
of Algebra (Klein, 1968) is dedicated to showing that Vieta's invention, the use of
letters for both known and unknown values in an equation—fully stated in 1591, in his
Introduction to the Analytical Art—is the crystallisation of a new concept of number,
namely, that of symbolic number. In Klein, a symbolic number is a number without an
ontology, ie, a number that acquires meaning only in relation to the properties of the
operations to which it is subjected, a conception that is clearly present in Bombelli and
in Cardano, although in restricted terms. In terms of our framework, the concept of
symbolic number is produced through an arithmetical internalism.

There are, however, other points of view from which Vieta's invention has to
be examined.

First, and most important, we have to examine the use Vieta himself made of
his notation in his mathematical work. Cajori (1928, p185), tells us that

"Vieta distinguished between number and magnitude even in his notation. In numerical
equations the unknown number is no longer represented by a vowel; the unknown
number and its powers are represented, respectively, by N (numerus), Q (quadratus), C

(cubus), and combinations of them.”

We also know that he completely rejected negative numbers (Cf. M. Kline,
1990, p252), a fact which is reflected in his adoption of two separate symbols for
subtraction: "—," to be used when we were sure of the first number being greater than
the second, and "=," to be used when we were not123, (Vieta, 1968, p331ff). M. Kline
also points out that,

123For the equality, Vieta used the word zquetur or a contraction of iL.
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"The motivation for much of the algebra that appears in Vieta's In Artem Analytiam
Isagoge, is solving geometric problems and systematizing geometrical constructions.
Typical of the application of algebra to geometry by Vieta is the following problem
from his Zeteticorum Libri Quingque: Given the arca of a reclangle and the ratio of its
sides, to find the sides of the rectangle. ... Vieta then shows how from thle final]
equation A fthe length of the larger side] can.be constructed by ruler and compass
starting from the known quantities..." (op. cit., p279)

If not the unrestricted acceptance of whatever could come from an arithmetical
internalism, be it negative or imaginary quantities, nor from a total abstract approach in
which the distinction between numbers and magnitudes would be irrelevant, what could
be the motive driving Vieta to substitute letters for numbers altogether in the Aralytical
Art ? To put it briefly, Vieta's intention is to present a method and to affirm its
transparency against the illusion of virtuosity:

"Diophantus in those books which concern arithmetic employed zetetics most subtly of
all. But he presented it as if established by means of numbers and not also by species
{which, nevertheless, he used), in order that his subtlety and skill might be more
admired; inasmuch as those things that scem more subtle and more hidden to him who
uses the reckoning by numbers (logistice numerosa) are quile common and immediately

obvious to him who uses the reckoning by species (logistice speciosa).” (Vieta, 1968)

6r, as van der. Waerden puts it (1985, p62), "His aim was to revive the method of
analysis explained by Pappos in his great 'Collection’ and to combine it with the
methods of Diophantos.”

Given the emphasis put on Vieta as "the founder of algebra,” we think that two
remarks are necessary. First, none of the transformations of equations proposed by
Vieta are new. They are clearly stated by Islamic algebraists from al-Khwarizmi
onwards, as is a general algebraic calculus??4, Second, the "letters” of the Analytical
Art are not as general as a less observant eye might believe: the "Law of Homogeneity"
addresses exactly the problem caused by the geometric character of the species:

"...for Vieta the ultimate aim of this procedure is indeed to find geometric constructions
and numbers; in the laller case, this means finding 'possible’ numbers, that is,
according to the passage from the Apollonius Gallus, such numbers as have a direct

geomelric interpretation.” (Klein, 1968, p158)

124we remind the reader that Islamic algebraists had also envisaged algebra as a method for solving
problems in geometry and arithmetic, as we saw on Section 2 of this chapter,
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The reason why the calculus in the Analytical Art is so cluttered with rules
about "homogeneity" is precisely because the operations he envisaged were not
homogeneous, were not "Laws of Composition,"” but geometric constructions. And he
went to such lengths in explaining it—although when dealing with numbers he would
not care about it—because he wanted to expose the method in its generality and still
avoid a careless dimensional treatment. More than 600 years before Vieta, al-Khayyam
had solved this difficulty by implicitly introducing a unit of length (Cf. van der
Waerden, 1985, p24)

The Analytical Art produces, as it had intended to, and to its great credit, a shift
from "solving problems" to "a method for solving problems."!23 It is extremely telling
that not a single problem is solved or even mentioned in the Analytical Art. Tt is also
telling that the what we see today as one of the greatest technical improvements of all
times in mathematics, didt not cause the same impression in Vieta's time. M. Kline
(1990, p262) says that,

"...as far as one can judge, the introduction of letters for classes of numbers was
accepted as a minor move in the development of symbolism. The idea of literal
coefficients slipped almost casually into mathematics. ... Improvements in Vieta's use
of letters are due to Descartes ... However, like Vieta, Descartes used letters for positive
numbers only ... Not until John Hudde (1633-1704) did so in 1657, was a']et_ter used

for positive and negative numbers.”

It maybe that in itself, specially if we consider the clumsiness produced by the
"Law of Homogeneity," Vieta's invention did not have much to offer for those
concerned only with "solving problems," and for this reason the use of letters in Vieta's
manner took some time to be absorbed by mathematicians.

By using letters for the coefficients, however, not only method is highlighted,
but a change in the nature of the expressions of algebra occurs: the arithmetical
articulation is in evidence, and the manipulation of equations gradually assumes the
character of manipulation of (algebraic) forms. Algebra had, of course, always
proceeded, from Diophantus onwards, by manipulating the forms in the equations, but
Vieta's notation brings the arithmetical articulation to the forefront, by avoiding it to be
"absorbed," at each step of the solution process, because of the actual calculations.

125The Analytical Art ends with the phrase "Finally, the analytical art, having at last been put into
the threefold form of zetetic, poristic, and ¢xegetic, appropriates 1o itself by right the proud problem of
problems, which is: TO LEAVE NO PROBLEM UNSOLVED."
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Already in 1631, however, Harriot explores the "...the true construction of
Compound Equations and how they be raised by a multiplication of Simple Equarions,
and may therefore be resolved into such," (Wallis, in Fauvel and Gray, 1987, p294),
and in 1637, Descartes’ Geometry makes a totally new use of algebra:

"If then, we wish to solve any problem, we first supposc the solution already effected,

and give names to all the lines that seem needful for its construction — to those that

are unknown as well to those that are known. Then. making no distinction between
nown known li nray ifficulty i hat show

f] i n i il it possibl X ingl
quantity in two ways. This will constitute an equation, since the terms of of one of
these two expressions are together equal to the terms of the other,” (Descartes, in

Flauvel and Gray, op. cit., p399) (our emphasis)

By 1795, Lagrange makes full use of this aspect of algebra—the arithmetical
articulation—to show that the "the general expression of the roots of an equation of the
third degree in the irreducible case cannot be rendered independent of imaginary
quantities," beginning by stating that

"Let us take, . .the equation x3+px +¢=0, and let us suppose that its three roots are a, b,
c¢. By the theory of equations, the left-hand side of the preceeding expression is the
product of three quantities x-a, x-b, x-c ..."(Lagrange, 1901, p83ff)

But another important aspect of algebra is highlighted by the use of the literal
notation. Because one is not concerned with actual calculation, the question of whether
the letters are standing for whole numbers, irrationals, negative or imaginary quantities
becomes very much secondary, and it is the properties of the arithmetical operations
that play the main role in the algebraic manipulation proper. In other words, different
types of numbers, each one with its own ontology or foundational model, are collapsed -
into a single object, NUMBER, which meaning is given internally, or, as Nagel (1935,
p458) puts it, “the intrasystemic meanings of the signs (their syntax, or modes of
combination) [are kept distinct] from the extrasystemic interpretation which may be
given them."”

The notion of a collapsed object also plays a decisive role in the development of
a broader understanding of algebra, because as collapsed objects, polynomials,
matrices, permutations, etc. can become objects of an algebraic system. If we
consider, for example, the field of the invertible 2x2 real matrices , we see that the
object "matrix” is defined, then an addition and multiplication for them, and it is shown
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that those operations have such and such properties, and from then on, we can deal
with the 2x2 matrices as collapsed objects—if this is what we wish, of course—as if
we had never known that they are "tables" of real numbers and that the operations have
this or that effect on those "tables.” The case of abstract algebraic systems is different
only insofar as in them we give up altogether any ontology, foundation or
extrasystemic interpretation for good, and we intend only the properties of a given
algebraic system, ie, the only meaning available to the elements of an abstract algebraic
system is the intrasystemic meaning, the meaning provided by the properties of the
operations operating on them.

The symbolic character of the elements in an algebraic system—numbers being
a particular case—then, depends on the mathematician's willingness to collapse those
objects, to disregard their inner structures, to disregard extrasystemic interpretations.
This was true for operating with irrational numbers and with complex numbers, as it
was, in fact, the conceptualisation that made possible for permutations to be operated
"as if they were numbers,” (see, Vuillemin, 1960, p16) or for Gauss's treatment of
quadratic forms (see Gauss, 1986, and also Bourbaki, 1976, p79ff). Moreover, as the
possibility of disregarding extrasystemic interpretations is taken aboard, the only
obstacle for the development of abstract algebra is the resistance, from inside of the
mathematical community, to a "useless" mathematical theory: Hamilton spent the rest of
his life after inventing the quaternions, searching for physical applications for his
theory (Crowe, 1967, p30), and Peacock refused to give up the "Principle of
Permanence of Equivalent Forms"126;

"But could not a symbolic algebra be constructed independently of any of the
suggesting science, il may be asked. Is not the function of the suggesting science
merely psychological, and does not the equivalence of forms in the algebra depend upon
its own assumed general rules of operation? Peacock considered the idea, only to reject
it, because in that case 'we should be altogether without any means of interpreting
cither our operations or their resuolts, and the science thus formed would be one of

symbols only, admitting of no application whatever.” (Nagel, 1935, p455)

We think that one last remark must be made in relation to the use of algebraic
symbolism. It is clear that historically, it provided a solid base from which concepts
and conceptualisations could develop; it also provided a strongly suggestive notational
form. Nevertheless, we must keep in mind that from a mathematical point of view, it is

126" Whatever algebraical forms are equivalent, when the .symbols are general in farm but speciﬁc in
value, will be equivalent likewise when the symbols are general in value as well as in form.'...It will
follow from this principle, that all the results of Arithmetical Algebra [where only positive numbers
are allowed] will be results likewise of Symbolical Algebra..." (Peacock, 1845, p59)
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" not essential to those developments. Indeed, it was none other than van der Waerden
who said that,

"...many non-mathematicians...grossly overestimates the importance of symbolism in
mathematics. These people see our papers full of formule, and they think that these
formul® are an essential part of mathematical thinking. We, working mathematicians,
know that in many cases the formulz are not essential, only convenient," {in Fauvel
and Gray, 1987, p143)

and Gauss candidly said, in relation to Wilson's Theorem,

"It was first published by Waring and attributed 1o Wilson...But neither of them was
able to prove the theorem, and Waring confessed that the demonstration seemed more
-difficult because no rotation can be devised to express a prime number. But in our
opinion truths of this kind should be drawn from notions rather than
notations." (Gauss, 1986, p50) (our emphasis in bold) '

CONCLUSIONS

At the beginning of this section, we have said that two aspects of the
development of algebra in Europe would constitute our main concern: (i) the process of
internalisation; and, (ii) the development of new forms of notation,

We have said, moreover, that those two developments should be examined in
two directions: changes in the notion of number, and changes in the character of
algebraic activity.

About the development of new forms of notation, and about the extension of the
notion of number, we think that what we have said so far is sufficient to clarify the
matter.

The process of internalisation has been made thoroughly clear; not only by the
acceptance of complex numbers long before an acceptable foundational model had been
provided for them, but also for the gradual realisation that extrasystemic interpretations
did not affect algebraic activity itself. The radicalisation of such understanding led to
the development of abstract algebra.

In relation to the algebraic structure of number systems, it is only natural to call
it arithmetic internalism. We must now consider if algebraic operations can be, in some
sense, be said to be "arithmetic,” and if this usage can produce useful insights.
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Algebraic operations are finite, ie, they take a finite number of operands.
Algebraic operation are closed, and as it has to be defined in all cases, it means thatin a
system with more than one operation defined, they operate homogeneously. In those
important aspects, algebraic operations "behave"” like arithmetic operations. It is true, of
course, that "arithmetical operations are particular cases of algebraic operations, and,
thus, they should behave accordingly." But this is not the point in question here: the
intuition on which algebraic operations are based is that of arithmetic operations, and
arithmetic in Arithmetic has to do with the compositional aspect of the operations, ie,
with their algebraic aspect as "Composition Laws," and not with numbers as special
objects. As long as we can speak properly of adding and multiplying quaternions, and
we speak of the arithmetic of the quaternions, there seems to be no reason why
specific, "intuitive,"” properties should be attached to the notion of "arithmetic” in the
sense we are proposing to use it127.

The term arithmetic, used together with internalism, does indeed suggest that
within the Semantic Field produced by algebraic thinking, meaning results from, and
only from, the properties of the operations. By analogy with the traditional use of
arithmetic, we build a notion, we make algebraic thinking intelligible, in the same way
that by analogy with real numbers Cardano made complex numbers intelligible—long
before any foundational model was available, and the use of arithmetical internalism as
part of a characterisation of algebraic thinking is, thus, justified.

While we are dealing with the solution of equations, the analyticity of algebraic
thinking is clear, and directly relates to "assuming the unknown as known, and from
the relationships established determining its value."” As the expressions of algebra
become less "parts of equations” and more algebraic expressions in théir own right, as
the arithmetical articulation of those expressions become the focus of attention, the
notion of analyticity has also to be seen in a different 'guise. The distinction between
"known" and "unknown" is not only blurred because—as in as-Samaw'al—one
operates on both following exactly the same rules, but also, and more important,
because the central notion becomes that of expressing those algebraic expressions under
different forms, and the equivalence of the three equations

a+b=c (I)
a=c-b (II)
b=c-a (III)

has to be understood as the fact that from (I) an expression for a can be deduced, as in
(II) and (III), etc.. In this context, analysis has to be understood as going from the

127Commutativity, for example. And associativity in the case of the octonions.
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more complex and general to the more simple and particular, ie, deriving a particular
expression for a, from a supposition—equation (1), for example—which "indifferently"”
involves a, b, and c. The element a may be "known" in the sense that it represents "any
number,” for example, but its representation in terms of ¢ and b 1s, in (1), "unknown."”

1 C I T CH

We think that the most important general result of our historical investigation, is
that it has unfolded several ways in which the algebraic activity can present itself, and
also that those modes of presentation formed, in each case, an "organic” whole, within
which contradiction, difference, and agreement are dealt with, rather than a somewhat
blind struggle to produce more and more mathematical results—be they theorems or
methods.

As a first conseguence, it becomes clear that to search for a "line of progress”
that we can follow through history, is the surest recipe to meet the "void" mentioned by
Rashed!28. Moreover, that general result suggests and informs a rich possibility for the
study of the learning of algebra and the development of an algebraic mode of thinking
by individuals, namely, to study the mathematical culture of the learners, or more
adequately put, the mathematical ethos of the learners. This means we should consider
the conceptualisation of mathematics held by then, but also which mathematical
concepts and objects "belong" to that ethos, and how they are organised and articulated.
As with individuals in relation to their mathematical ethos, in history we have
knowledge being exchanged by or imported into a given mathematical culture, and
those elements are directly absorbed, reinterpreted, or rejected, depending on how they
relate to the culture into which they are being inserted. But, in the same way that we are
forced to abandon the search for the "line of progress” in history, such an approach to
educational research forces us to abandon the notion that "recapitulating” history offers
a sensible approach to teaching; a child living in the urban area of a modern city, will,
by no means, "recapitulate” the mathematical culture of Babylonia. Moreover, which is
the lIine the child has to take in order to achieve this supposed "recapitulation"? Does it
start at Babylonia Station or before? Is it an express line from Greece to Europe—as
some would like to have it--or does it take detours through China, Islam, the Hindus,
the Maias, the Navajos? The almost comic—but, in fact, tragic—character of the
analogy, only makes clear that in investigating the learning of mathematics as a cultural

128" 4 rédaction historique du mathématicien est .., significative: entre la préhistoire grecque de la
géometrie algébrique et Descartes, Dicudonné ne trouve qu'un vide qui, loin de faire peur, est
. idéologiquement rassurant.” (Rashed, 1984, p309)
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process, we must examine and take into consideration the ethos with which we are
interacting. Our investigation of the historical development of algebra makes the
examples examined in Chapter 1 (Introduction)—for example Freudenthal's teaching
experiment and Luria's interviews—more significant, and at the same time it provides
an extended and mathematically specific illustration-of the general points we approached
there.

Examining the ethos of the learners differs in one essential way from
identifying their misconceptions. In the former, we try and establish not the weak
points, but, on the conirary, the strong points in the learners' mathematical ethos, those
points around which their knowledge is organised. The objective of such examination
is not only to inform a corrective teaching, but also to prevent the mistaken attribution
of intentions and conceptualisations to the learners, where they do not exist.

A second consequence is that our claim that it is adequate to distinguish
algebraic thinking from the contents of algebra is shown to be correct. We learned
from history that algebra can present itself in many different forms and mathematical
contexts, some of which are evidently less complex than others, some of which are
theoretical, some not, and some of which intend solving problems, while in others it is
the process of solving problems which is highlighted; in each instance, however, that
knowledge was or could be produced or justified through algebraic thinking as we
defined it, and those cases in which it was not, provide useful illustrations of
non-algebraic algebra—the term being as adequate as speaking of Algebraic Geometry.
In relation to some parts of the algebraic body of knowledge, for example the extension
of the number system to include complex numbers, algebraic thinking proved—as in
Cardano and Bombelli—irreplaceable, showing that the distinction is not only useful,
but also essential, pointing out to the need of making algebraic thinking, and not only
the content of algébra, an aim of teaching.

Another key result of our historical investigation, is that we could identify the
role of algebraic thinking as an intention that drives—at the same time rendering it
meaningful—the development of a body of algebraic knowledge, particularly in Islamic
and Western mathematics. In al-Khwarizmi, the algebra itself is technically poor, but
the novelty of the approach points towards algebraic thinking, and it is by the intention
of producing an algebraic algebra that the development of an algebraic knowledge is
guided. In a different mathematical context, but in similar fashion, we see algebraic
thinking driving the development of Peacock's Symbolical Algebra and Hamilton's
Quaternions.
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We will now examine two foci of tension within algebraic activity, and around
which the remaining findings of our historical investigation will be organised.

MEANING IN THE ALGEBRAIC ACTIVITY

In relation to meaning in algebraic activity, tension builds between an
ONTOLOGY OF THE ELEMENTS129 and the PROPERTIES OF THE OPERATIONS. The
strict ontological commitment of Greek mathematics, largely precludes, as we saw, a
numerical interpretation of the results of geometry; on the other extreme of the
spectrum, in Abstract Algebra, the only meaning possible is that provided by the
properties of the operations.

The distinction used by Novy, between intrasystemic and extrasystemic
meaning, is useful, but requires some refinements.

There is, first, the extrasystemic meaning produced by an ontological
determination, in which case the element's essence and mode of being is determined,
and not only the operations are derived from this determination, but, also, those
operations intend exactly those elements; it is in this respect that Jacob Klein says that
in Greek mathematics the general applicability of the method depends on the generality
of the object. There is also the extrasystemic meaning produced by a foundational
model, which is intended to lend intelligibility to the elements and operations, but not to
determine essence. A foundational model is, of course, built on the basis of objects
which are considered as intelligible—as in the case of reducing fractions to integers, or
complex numbers to points on the plane. Taken in its stricter sense, the notion of
foundation in mathematics—for example, providing a model of irrational numbers
within the structure of the rational numbers—does not appear until quite recently in
history, and we should certainly not expect to find it in our students, so we prefer to
understand it in a more flexible sense, namely, as a familiar model in which we can
"see” the original elements being represented and we can formulate operations that
"behave" as the original ones, thus enabling us to deal indirectly—and more safely—
with the original system by dealing with the model instead. In this "intuitive” sense, we
will call foundational models simply, models or interpretations.130 An ontology says
"what it is,” and a model shows "how itis."

1298y "elements," here and in the rest-of this section, we mean "the elements of the base set of an
algebraic system."

1301 his Treatise on Algebra, Peacock (1845, p448iT) said that, "To define, is to assign beforchand the
meaning or conditions of a lerm or operation; to interpret, is to determine the meaning of a term or
operation conformably to definitions or conditions previously given or assigned. It is for this reason
that we define operations in arithmetical algebra conformably to their popular meaning, and we
interpret them in symbolical algebra conformably to the symbolical conditions to which they are
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On the other hand, the importance of introducing the notion of intrasystemic
meaning, is to make clear that the notion of "meaningless” elements in an algebraic
system is not adequate. First, because it is beyond doubt that an absolute lack of
meaning would be identical with the impossibility of algebraic activity. Second,
because an algebraic treatment of an algebraic system, pressupposes precisely the
internalism which renders all extrasystemic interpretations irrelevant, as meaning is an
internal meaning, derived only from the properties of the operations and of the
equality.

If it is the case that we want to say that extrasystemic meaning has been
abandoned, this should be made absolutely clear, but we must also make clear that
abandoning extrasystemic meaning is only possible because there is a shift in
referential, a shift to a distinct Semantical Field.

Another important issue directly related to that of meaning, is about the ways in
which the procedures of algebra are justified. In our historical investigation we found
three basic models used for justifying those procedures: geometric models,
combinatorial models, and algebraic models; and, of course, models that combine
aspects of those three.

To prove that13! (a+b)2 2 a24+2ab+b? using a square cut into four parts, is
simply to make evident the fact that the four parts identically correspond to the whole,
and it can be said to be a simple geometric proof; it does not prove, of course, that in all
cases, ie, for any arrangement of the parts, a%+2ab+b? 2 (a+b)?2, but by showing that
those parts can be always combined to restore the square, would do the trick. The latter
is an example of a combinatorial proof supported by geometric objects.

As we have pointed out in Section 2 of this chapter, the rule for the
multiplication of the "wanting" components of two binomials can be justified in a
purely combinatorial manner; whole-part models are used essentially in a combinatorial
way.

As to purely algebraic models, the solution of bi-quadratic equations by radicals
provides a typical instance. In purely algebraic models, operations are objects, in the
sense that they provide the information which guides the algebraic activity, they provide
information on "what can be done” and on "what should be done.”

subject.”" Seen in those terms, an ontology defines, and a model makes the intrasystemic meaning
intelligible.

131The symbo! "=" indicates a unidirectional transformation, in which an equality is produced.
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There is a subtle interplay between using a model to justify an algebraic
procedure, and to use a model to guide the algebraic activity, In the former case,
radically taken, the use of the model intends to make the procedure intelligible, whereas
in the latter the model actually provides information on "what can be done," for
example, to manipulate an equation. The subtlety resides precisely in the fact that a
guiding model can remain hidden throughout the solution of a problem, and the
justification of the solving procedure, using that model, would not represent the
interpretation of the procedure in another model, so to make it intelligible, but rather the -
procedure itself being explicated; it is necessary to understand which objects the
procedure intends, and also how those objects are perceived as relating to the objects
dealt with in the justification model.

A failure to take this distinction into account can, as we have seen, lead to
erroneous interpretation of historically sitnated mathematical texts, but also, and of
great importance to our overall argument, it can lead to erroneous didactic readings. The
main objective of the Experimental Study, the results of which are presented later in this
dissertation, is to investigate the guiding models used by those students when solving
the problems we have proposed to them.

There is one last aspect of algebraic activity we want to examine in this
sub-section. We saw that in Chinese mathematics, mathematical objects are “confined,"
to a great extent, to the methods in which they appear; it is possible, then, to
characterise each method as a mathematical context. Each of those methods are used to
solve problems arising from various “concrete” contexts, and in this precise sense, they
can be said to be abstract in relation to the extrasystemic meanings of its objects.

Allowing mathematical objects belonging to one mathematical context to become
part of another mathematical context, we termed horizontal development; the refinement
or extension of a method—eg, the generalisation of the method for extraction of square
root to allow the solution of quadratic equations, or the extension of the method to
powers of degree higher than three, or the adoption of the cross-multiplication in the
fang chen—those developments which expand only internally a mathematical context,
we termed vertical developments. Seen from this point of view, in Chinese mathematics
we have a strong vertical deVelopment but almost no horizontal development.

The result of our historical investigation suggests that a notion essential to
promote horizontal development is that of theoretical mathematical knowledge, in the
precise sense of a body of knowledge that is organised around mathematical objects,
and not around procedures for solving problems. In Greek mathematics, although this
notion was available, the horizontal development is severely hindered by the existence
of strict ontological commitments, and the notion of irrational or negative numbers, for
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example, cannot be developed; on the other hand, within the limits imposed by the
ontologically determined objects, there is a strong horizontal development, as the
content of the Elements of Euclid clearly indicates.

In Islamic mathematics we find a theoretical treatment of the algebraic
knowledge, and greater horizontal development, to the benefit of algebral32, In
European mathematics, but also—and decisively—in all branches of science, horizontal
development, represented as the generalisation of the methods, is a driving force; the
project of a world described by numbers is part of this effort. (See, for example, Davis
and Hersh, 1988)

Vertical development is closer to "solving problems”; horizontal development is
closer to "investigating methods."

OBJECTS IN THE ALGEBRAIC ACTIVITY

The central object in the algebraic activity is the operation, which is in all cases
to be understood as a composition law!33,

Around the concept of operation, a tension exists, between OPERATION AS
CALCULATION, as in for example, |

"5+328" or "(3a¢-5b)-(a-3b) = 2a-2b,"
and QPERATION AS PRODUCER OF ARITHMETICAL ARTICULATION , as in
"X245x4+6 = (x+2)(x+3)" or "2n+1 is an odd number"

In the former, it is the resulr that is intended, whereas in the latter, it is the
properties of the expression—derived from the properties of the operations—which are
intended. In the definition of even number as “an integer number that divided by two
gives an exact result,” the division is used in its first aspect, but in "an even number is a
number of the form 2a, where a is an integer number," the multiplication is used in its
second aspect.

~ Another essential element of the algebraic activity is the equality relationship.
Understood in relation to the two aspects of operations just examined, the equality can
be seen as: (i) a unidirectional relation, where the right-hand side is tfle result of the
calculations on the lefi-hand side; (ii) a bi-directional relation, meaning that if the

132Rashed (1984) explores the usc and development of algebra in relation to the theory of algebraic
uations, the development of decimal fractions, number theory, and combinatorial analysis.
1338¢¢, for example, the entry “algebraic operations” in Daindith and Nelson (1989, p13).
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calculations on both left- and right-hand sides are carried out, the results will be the
same; and, (iii) as a bi-directional relation, meaning that the expressions on both sides
can substitute each other in any other algebraic expression where one of them appears.

We will reproduce again, for its preciseness, the definition of equality presented
in Robinson (1951, p4), and already quoted on Section 6:

"1.5. Definition of Equality. We shall say that a relation of equality is defined in a
given system of axioms if it includes a relation E(x,y) which is symmetrical, reflexive
and transitive, and such that every relation F(xj,...,x,) included in the system, it can be
proved that equal objecis can be substituied for one another as arguments,
(x1)...Gn)(31)-. . () [ECx1,y1) A E(x2.92) A oo A EQxpyn)] 2

[F(x1..0.%0) D F(r1,0000¥0)]
where A and > denote conjunction and implication respectively.”

The notion of result as in a calculation is not in evidence, and a property such
as a=b = a+c=b+c¢ also acquires a meaning independent of that of calculation.

In the process of dealing with equations, the three "types” of equality produce
different situations.

With (i), an equation like 100=25+15x makes little sense, and even less does
100+2x=25+13x, while with (ii) they do. In both cases, solving the equation’is seen as
determining a number such that if x is replaced by it, the calculations will come out
correct, ie, the equality will be preserved.

With (iit), solving the equation is seen rather as transforming the equation until
one reaches an equation of the form x=... .

~ The ténsion between those modes can be seen in the fact that students who are
taught to solve equations as "isolating x on one side,” often do not "check"” the answer
obtained: the task of reaching the desired form is not clearly linked to the task of finding
a number which satisfies the given relation.

When equality is seen as in (iii), the very notion of "unknown" becomes, to a
great extent, irrelevant, and the focus of attention in manipulating equalities is in
expressing the arithmetical articulation of any of the expressions in the equality in terms
of the other expressions in the equality.

In the practice of solving equations with specific coefficients, the possibility of
actually performing the numerical calculations obscures the aspect of expressing the
arithmetical articulation, and emphasises the aspect of operation as calculation. On the
other hand, if the arithmetical articulation is emphasised, instead, carrying out the
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actual calculations can be seen as a particular way of manipulating the arithmetical
articulation. This suggests that a more efficient approach to teaching the manipulation of
equalities in algebra might be to begin with generic expressions, and not numerically
specific ones. _

It also indicates that a calculating practice, in the context of solving problems,
does not lead by itself, to the notion of arithmetical articulation. First, because, as we
said, the arithmetical articulation is absorbed in the course of the actual calculations,
but also because the procedures involved in solving problems are not usually, and
specially in "practical,” everyday use, related to the arithmo-algebraic structure of the
problem. The case of money change is typical: I spend £A, and pay with a £B note.
What is the change I should get? One strategy is to "count up" from A to B. Another is
to subtract A from B. In the first case, it is taken into consideratio.n that A plus the.
change must give B, but this does not imply that a subtraction is involved, serving only
to contro] the "count up"; in the second case, the general scheme is that I have to take,
from what I gave, the money I spent, and see what is left, ie, A and the change make
B, not A plus the change. In both cases the underlying, guiding, model is a whole-part
model. In the chapter on the Experimental Study we will examine several similar
examples.

In the last paragraphs of the Conclusions to Section 6, we think enough was
said about the way in which analiticity has to be understood in the context of
operations as producer of arithmetical articulation, and differently from the
understanding in the context of "unknowns." We should also add that although analysis
and synthesis are complementary processes, in such uses of analysis as that we have
examined in Section 2, in relation to Euclid, there is always an attempt at avoiding the
unknown, although, of course, it has to be considered in the process. This observation
is of importance for us, because in many cases in the Experimental Study, this use of
analysis is visible, and will be distinguished from the deliberate and domirant use of
analysis as we have in algebraic thinking. |

ALGEBRAIC STRUCTURE AND ORDER STRUCTURE

We think it is important to examine, yet briefly, this aspect, in relation to
number systems.

In Section 6 we presented an objection, raised by Artaud (17th century) against
negative numbers: "How can it be that -1:+1=+1:-1, that is, a smaller is to a greater as a
greater is to a smaller?" We have also shown that this objection is clearly raised because
the notion of order is not properly understood, and in fact, it is, in this specific case, a
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notion of order derived from the idea that smaller than can only mean a part of. The
problems caused by statements like -5>-10 are well known,

Schematically, the source of such misconception could be this. First, positive
numbers are defined as "number of something," and then as "a number of (fractional)
parts” or as "measure". Negative numbers, then, are defined as "bellow zero"—be it in
the context of bank accounts or temperature; in both cases the negative indicates "less
than zero," but the meaning of less is only casually examined. The fact that
“(-2)+(+2)=0" is derived from those "pseudo-ontologies," as in "if I have a debt of 2
(the -2) and deposit (add) 2 (the +2), I end up with nothing (zero) in my account,” or in
"if the temperature is 2 degrees bellow zero and it raises by 2 degrees, it will become
zero degree.” ,

Mathematically, there is a problem here: given the set of numbers 20, and an
order structure for those numbers, together with the intention to preserve the properties
of the order structure in relation to the operations, it is possible to deduce, from the fact
that (-1)+(+1)=0-—the equation that defines -1—the fact that -1<0:

(i) for a, b=0, one has that a>b = a+c>bic

(ii) but +1>0, and thus, +1+(-1)>0+(-1}, ie, 0>(-1)

That if (i) holds for ¢>0 it also holds for b<0 is thus proved:
given a, b>0, and c>0,‘so ¢+(-c)=0, then
@iii) a>b = a+(-c)>b+(-c) [o] or
a>b = a+(-c)=b+(-c) P or
a>b = at(-c)<b(c) [Vl
That [B] cannot hold is evident.
If [y] holds, then, a+{-c}+c<b+(-c)+c also holds, as ¢>0
But in this case, a<b, once c+(-c)=0, and this is impossible.
As a consequence, {o] holds.

It is obvious that from (-1)<0 one cannot deduce (-1)+(+1)=0..

The objective of this little mathematical exercise is threefold. First, to highlight
the fact that the traditional approach outlined above is only possible because addition is
redefined, not any longer as conjoining, but as a vectorial, directed, addition, ie, the
whole algebraic structure is substituted, while the "new" addition is made to seem
simply an extension of the "o0ld" one, which it is not. Second, to support the suggestion
that it might be profitable to consider looking for interesting ways of introducing
negative numbers first in relation to the algebraic structure. Third, and most important,
to indicate that teaching should aim at showing that the order structure and the algebraic
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structure are distinct aspects of the number system—although aiticulated by the
properties of the operations in relation to the order structure—and that the notion of
order based on "part of" does not apply in the case of negative numbers.
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- Chapter 4
Experimental Study

"Batatinha quando nasce,
esparrama pelo chio.
Menininha quando dorme;

pde a mio no coragao.”

Brazilian nursery rhiyme



4.1 INTRODUCTION

As we have indicated in Chapter 1, the main objectives of our experimental study
are two: ' ' '
(i) to investigate to what extent our characterisation of algebraic thinking enables us
to distinguish between different types of solutions for "algebraic verbal problems,” and,
(ii) to ascertain the nature of the non-algebraic models used to solve those
problems. '

The choice of "algebraic verbal problems" as the basic type of problem to be used,
is due, first, to our interest in examining the extent to which the situational context of a
problem may suggest a model or impose unnecessary restrains on the chosen models.
Second, algebraic thinking involves a shift towards "modelling in numbers,” and by using
contextualised problems we would be able to discern more shades of the solution process,
as the amplitude of the shift would be greater than if we used "pure number” problems.
Third, "algebraic verbal problems" are material typically used in the later series of primary
school and early series of secondary school, a period of schooling in which we have
particular interest; by using our framework to examine that material, we would be, at the
same time we conducted the research more closely connected with the thesis's objectives,
furthering our understanding of that specific type of problems.

We decided to include "secret number” problems in order to investigate whether the
absence of a situational context would lead the students to use an algebraic, or at least a
purely numerical model, or whether they would try to model the problems by interpreting
them "back" into some situational context or into some non-numerical Semantic Field (eg,
whole-part models or geometric models); by using a syncopated notation—abbreviations
for the variable names and the conventional symbols for the arithmetical operations and the
equality—we would be able to examine how the non-algebraic solvers would make sense
of the "arithmetical” context!, and understand some of the difficulties involved in making
sense of a problem presented in that form. This is an issue of particular interest for research
on the learning of algebra, and by avoiding the use of "letters” we would be able to focus
on the value of the "arithmetical” expressions as informative articulations, ie, (local)
structures which inform the solution process.

lwe use quotes in order to emphasise that we are only referring to a form of presentation—
as opposed to a form of representation, Whether or not the solver will deal arithmetically, ie,
in numbers only, with the problem, is something which cannot be predicted a priori.
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THE EXPLORATORY STUDY

The object of this small scale investigation was to study the strategies used to solve
"algebraic verbal problems" by subjects with little or no instruction in school algebra. Its
aim was to understand to what extent the strategies of school algebra are compatible with or
similar to those informal solutions, and what kind of obstacles would have to be overcome
if one wanted to build a knowledge of school algebra from those informal strategies.

The exploratory study was carried out with three groups. Two third-year groups,
3T and 3A (19 students in each) were from Fernwood Comprehensive School; a younger
group, on the last year of primary school, J (21 students), was from Fernwood Junior
School. Both schools are in Nottingham, England.

Group 3T was rated as top-ability by the school; group 3A was rated as low- to
average-ability.

The test presented to J and 3T consisted of five "algebraic verbal problems,” plus
two questions about “making change”. The test presented to 3A consisted of different
versions of four of those five problems, plus the remaining problem with the same text,
plus five short questions about solving problems.

Each problem corresponded to a different "algebraic structure,” ie, it would
correspond to a different type of equation.

Both sets of problems are presented in Annex A.

Of the five main problems used in this study, only one, the "Consecutive Numbers"
problem, was not used in the main study, primarily because its investigative nature required
more time for it to be solved. The specific results of the exploratory are in complete
agreement with those obtained in the main study—which are presented in the subsequent
sections-—and for this reason will not be discussed here.

The only remark which is worth making is related to the "Consecutive Numbers"
problem, which was not, as we said, used in the main study. Unexpectedly, the primary
school students performed equally well as, if not slightly better than, the secondary school
students. Given the very small size of the samples, this information cannot be taken as
indicative of any general phenomenon, but we were led to believe that the students in J
dealt more freely with the problem, ie, apparently they had less expectations about how this
type of problem "should” be solved, both because the problem was completely new for
them, but also because their experience with solving problems was much less related to the
use of specific methods, and as a consequence they were more able to explore the situation
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The six test papers composed, in fact, three pairs of test papers; each pupil was
presented with one of the pairs, each test paper presented in a session, never on the same
day, and never more than a week later. Each paper was solved in a 50 minutes session.

An important aspect of the testing conditions, was that the students were allowed 1o
use calculators whenever they were available, as well as being told, in all cases, that the
calculations could be just indicated if the student thought it was "too hard” to perform.
They were told, moreover, that they could solve the problems using whichever method
they wished, and the word "algebra” was carefully avoided in the introductions, in order to
prevent induction to a specific method, but also to prevent causing anxiety in those students
who knew little or nothing of "algebra.”

The particular aspects of each group of problems examined in this dissertation are
presented in the relevant sections on the data analysis.

For the main study we contacted two schools in Brazil—Escola de Aplicagdo da
USP and Colégio Hugo Sarmento, both in the city of Sao Paulo—and two schools in
England—Friesland Comprehensive School and Margaret Glen-Bott Secondary School—-
both in Nottingham. We decided to work both with Brazilian and English groups for two
reasons. First because the marked differences in the teaching of mathematics in the two
countries—in method as well as in content®—suggested that we would have a much more
varied sample in terms of approaches and models used, a suggestion which proved to be
correct. Second, because we would have the opportunity to carry out a preliminary
investigation into the effect of different teaching approaches in the development of an
algebraic mode of thinking, an aspect which we intend to further examine in the future.

Two Brazilian 7th grade groups (age 13-14 years, 56 students), two Brazilian 8th
grade groups (age 14-15 years, 53 students), three English 2nd year groups (age 13-14
years, 53 students) and three English 3rd year groups (age 14-15 years, 66 students), form
the sample of the main study. The number of students and the average age for each group,
are given in Annex C.

As a consequence of the test papers structure, each question was solved by roughly
one-third of all students in the sample (total of 228 students).

3The teaching of mathematics—particularly the teaching of algebra—in Brazilian schoels is,
almost invariably, content-driven and quite formal; investigative activities are very rare in
Brazilian mathematics classrooms. Onc may safely say that quite the opposite is true in
English schools. This general picture applies very well in the case of the four schools where
our experimental research was conducted.
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Five categories were used to classify the solutions:

1) correct solutions in which the problem is solved by setting and solving a
numerical equation in a recognisable form (OKEQT);

2) correct solutions that did not use any recognisable form of equation; tPe
calculations used to produce the answer are presented, with or without an
explanation or a diagram supporting the choices of calculations to be performed
(OKCALC)

3) incorrect solutions where there was an attempt at using an equation (WEQT);

4) incorrect solutions where equations are not used; calculations are presented, with
or without an explanation or a diagram supporting the choices of calculations to be
performed (WCALC);

5) trial-and-error solutions (T&E);

Calculations wrongly performed did not characterise a solution as "incorrect”: if the
overall procedure would lead to a correct answer had the calculations been performed
correctly, the solution was classified as "correct”; also, there were cases in which a
complete answer involved the determination of two values and only one of them was given
by the student: the correctness of the solution in those cases was assessed in relation to the
potential of the method employed to produce the second value, and in relation to the
student’s awareness of the existence of two values to be determined, as shown in the
establishment and manipulation of the chosen model.

The categories above are intended to describe only the form of presentation of the
solutions, not the underlying model; an OKEQT solution, for example, does rot imply
the presence of algebraic thinking. We consider this set of categories to be suitable for two
reasons: (i) on the onc hand, it is standard, providing categories which are easily
understood and applied by other people; and, (i1) precisely because it is based on the
perceived proximity of a solution to "standard algebraic solutions"-—notationwise—-the
analysis of scripts belonging to a same category allows us to highlight the importance of
understanding the underlying model in the process of investigating the nature of the
thinking involved in producing a given solution.

In this sense, the categories above provide a general "background” framework,
which 1s not supposed to correspond to the much finer understanding which is produced by
the analysis of the scripts. Moreover, in the examination of the scripts, we have not
characterised them according to the polarities produced in Chapter 3, from the historical
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study. The analysis conducted in Chapter 3 has a much more dynamic nature than that
conducted in the context of the experimental study, mainly because in Chapter 3 we not
only elicit the models accepted by a given mathematical culture, but also relate the
acceptance of those models to the more general conceptual framework of the mathematical
culture in question,; in the case of the experimental study, the application of a similar type of
analysis would necessarily involve examining the mathematical ethos of those students—a
line of research which seems to belong naturally to future extensions of our present work.
Attempting to use the polarities from Chapter 3 to produce some sort of justification of the
choice of models we had identified, seemed, thus, an artificial and inadequate approach.
Although recognising the importance of providing a more complete and "actual”
framework for characterising the non-algebraic solutions, we think that it would not be
possible to produce such a framework in the context of this dissertation, above all because
it would depend on a much deeper study of modes of thinking other than the algebraic one.

For the purpose of our analysis, four groups were considered: AH7, which
comprises all the Brazilian 7th grade groups; AHS8, which comprises all the Brazilian 8th
grade groups; FM2, the English 2nd year groups; and FM3, the English 3rd year groups.

All the percentage results of each problem examined in the analysis of the
experimental study, given for each of the four groups above, is in Annex D; nevertheless,
those percentages which suggest relevant or interesting aspects of the overall solving
activity, are quoted again in the the section corresponding to the group of problems to
which they refer. ‘

The methodological approach of our analysis of the data gathered in the main study
is thoroughly qualitative; this means that no strong claim is made exclusively on the basis
of the percentage results, but also that no statistical treatment was applied to the percentage
data. In our analysis, the percentage data only suggests underlying modelling trends, and
any claim is supported by instances to be found in the scripts.
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4.2 TICKET AND DRIVING PROBLEMS

THE PROBLEMS

et g A

$am and George bought tickeis to & concent.

Because Sam wanted a beuter seat, his ticket cost four times as much as
George's ticket,

Altogether they spent 74 pounds on the tickeis,

What was the cost of each tickei?
(Explain how you solved the problem and why you dit it that way)

Tickets 4x

Sam and George bought tickets to & concert.
Because Sam wanted a better seat, his ticket cost 2.7 times as much as George's

ticket.
Altogether they spent 74 pounds on the tickets.

What was the cost of each ticker?
{Explain how you solved the problem and why you dit it that way)

Tickets 2.7

Mr Sweetmann and his family have to drive 261 miles to get from Londonto -

Leeds.
Al a certain point they decided to stop for lunch.
After Junch they still had to drive four times as much as they had already
driven.

How much did they drive before lunch? And after lunch?
(Explain how you solved the problem and how you knew what to do)

Driving 4x

: Mr Sweetmann and his family have to drive 261 miles to get from London to
i Leeds.

i Al certain point they decided to stop for lunch.

i Afier lunch they still had to drive 2.7 times as much as they had already
! driven.

! How much did they drive before lunch? And after lunch?
i (Explain how you solved the problem and why you did it that way)

Driving 2.7
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GENERAL DESCRIPTION

This is the only pair of problems to appear on all three sets of questions, with the
pair Tickets [4 times] (T4) / Driving [2.7 times] (D2.7) appearing in the Blue-Gray and
Green-Beige tests, and the pair Tickets [2.7 times] (T2.7) / Driving [4 times] (D4)
appearing on the Yellow tests.

The questions were designed to investigate to what extent different kinds of
numbers - namely, counting numbers vs, decimal non-integer numbers — would affect
the choice of models used to solve problems with the same “algebraic” structure, and which
models would result. The {4] problems have the structure “this is 4 times as much as that,
and altogether...”, and the [2.7] problems have the same structure with 2.7 replacing 4.

In order to have some control over possible effects of the context in which the
problems were set, we used two contexts with different characteristics. In the “Driving”
problems the objects are portions of a road with different lengths, which can be sectioned
(for example, to be compared) and still maintain their characteristic as a portion of a road.
In the “Tickets” problems the objects are tickets with different values; there is no real
meaning in “sectioning” one of the tickets, and any direct contextualised comparison would
have to be made on the basis of the exchange values. It is clear that in both cases a
comparison is possible using respectively the lengths and the values.

DISCUSSION OF POSSIBLE SOLUTIONS

The simplest algebraic model that fits into those problems is a linear equation in one
unknown . A direct “translation” from the problems would in fact produce a set of two
linear equations in two unknowns. In Tickets and Driving , however, this representation
was never used; instead, direct substitutions were used, which we will comment a few
paragraphs ahead.

Depending on whether the unknown (here represented by x) is taken as the cheaper

ticket or the distance travelled before lunch, or as the more expensive ticket or the distance
travelled after lunch, we would have one of the following equations:
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(El) x+ax=b
(E2) x+xfa=Db
(E3) b-x=ax
(E4) b-x/d=x

with the corresponding values of a and b.

Equations E2 and E4 were never used by any student. Equation E3 was used by
one student only.

Setting the equation can be done in two very distinct ways, either by directly
representing a numerical relationship (“a number plus a times this number is equal to b”)
or by representing instead a whole-part relationship. On the former situation, the model
applies equally both to [4] and to {2.7] problems, because only a knowledge of operating
with decimal numbers is required (to multiply, to add —— very much as it has to be done
with the [4] problems where only counting numbers are involved) and for the students in
our study this knowledge was sufficiently developed. On the latter situation, however,
producing meaning for “4x” and for “2.7x” are processes that involve different degrees of
difficulty, even if calculating aspects of decimal numbers are well understood.

A whole-part model is quite simply produced for {4] problems: “1 (lot of) x plus
4 (lots of) x is equal to ...”; the 1 and the 4 play their natural role of “counting numbers”.
When the same model is applied to [2.7] problems, the need to interpret 2.7 as a “counting
number” becomes an obstacle because it requires — at least — the additional step of
decomposing the “2.7 lots” into “2 lots and 7 tenths of a lot” for the “counting” to become
visible.

Alternatively, an analogy could be drawn with “2.7 pounds of beans” (and one
would reasonably expect the students in our study to have no difficulty in concluding that
“if one buys 1 pound of black beans and 2.7 pounds of chilli beans, one has 3.7 pounds of
beans altogether”, indicating a willingness to accept decimals as quantifier). However, H
successfully apply this analogy to {2.7] problems one has to take the smaller of the two
quantities (cheaper ticket or shorter portion of journey) as a unif>.

No matter which model is used to set the equation, an Algebraic solution of the
equation is one that is based on properties of the arithmetical operations and of the equality
involved in the equation.

SA step not easily seen by those students, as the analysis of the data will show,
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A property like ab=¢ = b= ;c; can be easily justified in terms of “sharing” if

a is a positive integer (“if a lots of b is equal to ¢, then sharing ¢ into a parts will give the
value of b”), but not otherwise. If however this property is seen as a property of the
numerical relationship, and thus also applicable when a is not a positive integer, we will
consider that an algebraic understanding exists, and if the “explanation” is maintained it will
be seen as a particular illustration of the property.

A straightforward solution to E1 would be,

(D2.7)

X + 2.7x = 261

3.7x = 261

X = 23“,; = 70.5 miles, etc..

It is important to observe that the operations performed with D2.7 would be:
(i) 1+27; (i) 261+3.7; (i) 70.5x 2.7;

and with D4,

(i) 1+4; (i) 261+5; (iii) 52.2x4.

Non-algebraic models that fit into those problems’ context would almost certainly
be of the type “1 lot and a lots, giving...”, be they supported by or derived from a line
diagram, a Venn diagram, or a block diagram, ie, a whole-part model (Figure T&D 1).
As we saw above, the structure produced by such models can be reinterpreted as a
numerical relationship and manipulated algebraically, to produce an algebraic solution. But
such structures can also be directly manipulated, with calculations performed only to
achieve required evaluations of parts.

a parts

i part

fig T&D 1
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With T4 the manipulation of the whole-part structure would proceed like this:

(i) one of the tickets is 4 times more expensive then the other one; this is the same
as saying it “is™ 4 tickets;

(ii) 1 ticket and 4 tickets cost b pounds, ie, 5 tickets cost b pounds;

(iii) now, to know how much 1 ticket costs, I share the b pounds into 5 tickets.

With D4 we would have the same general procedure, with “parts” or “sections”
replacing “tickets”. It is clear that “lots™ would work well with both .

Operations are used to gyaluate parts as necessary. Thus,

(ii’) 1+4 corresponds to evaluating the total number of tickets, and,

@iti") b+ 5 corresponds to evaluating how much goes to each of the 5 tickets
through the sharing.

When the same model is applied to [2.7] problems, two difficultics arise. One is the
reinterpretation of “2.7 times more” as “2.7 tickets” or as “2.7 sections”, Although the
problem is concerned with the value of the tickets, the non-algebraic models deal with this

by associating “the value of one ticket” to “one ticket”, the image of the ticket working as
an icon for the value. It is from this point-of-view that the 2.7 should have to “count”
tickets in the way the 4 naturally does, with the consequences pointed out a few paragraphs
above.

The second difficulty is in fact iwofold. On the one hand, there is a problem with
step (iii) above. In our description of the non-algebraic solution for T4 we used the word
“share” -— underlined for emphasis — because we wanted to stress that the main aspect of
the manipulation is the sharing, the result of which is eventually made actual either by
performing the division by 5, a build-up calculation or by a trial-and-error process. In the
case of [2.7] problems, obtaining the value of “1 lot” by “sharing” the total into “3.7 lots
(M) is certainly a difficult and “unnatural” step.6

On the other hand, it is difficult to see why anyone would want to step into (ii)
without being aware that this is an intermediate step leading to (iii); step (ii) corresponds to
“finding how many altogether so I can share between them” instead of “collecting the
various occurrences of the unknown”. Although in procedural terms step (ii) is processed

S«unnatural” to the exient that experts would use such metaphor only to try and make a
verbal link with some situation where only “true” counting numbers appear.
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before step (iii), both steps are engendered in conjunction: the two aspects are composed to
produce a larger obstacle that has to be overcome in one go’,

One important point in relation to this group of questions is that it is clear here that
the use of algebraic symbolism (standard or not)} is not enough to guarantee that algebraic
processes are involved in the solution of [4] problems. Algebraic notation could be used as
a concise notation for a non-algebraic solution, a complete correspondence existing with the
steps of an algebraic solution (figure T&D 2), as much as a “calculations only” solution
could have been guided algebraically (the problem being simple enough to allow that).

X+ 44 = b
('.’ S , . R‘?)
e 9% — 5% = b
b pounds
K X ® X .
b5 b5 bS5 bS5 b5

fig T&D 2
Nevertheless, our analysis also indicates that no matter the notation employed, the

greater the use of an algebraic model by a group of students would produce a smaller
difference between the facility levels for [4] and [2.7] problems.

TThe analogy with “buying x and y pounds of ...” would not be enough to overcome alone
this double difficulty: the “anticipation” problem would remain.

Experimental Study ' 176



Previous research on the solution of multiplicative problems has pointed out that the
operations of arithmetic (multiplication and division being of interest for us in this section)
might remain linked to “primitive behavioural models that influence tacitly the choice of
operations [to be used to solve problems]} even after the learner has had a solid formal-
algorithmic training” (Fischbein et al., 1985, p.3). According to Fischbein, the preferred
model for multiplication would be one of repeated addition, and the preferred models for
division would be those of partitive or sharing division and of quotative or measurement
division. It is clear that “under such an interpretation ...a multiplication in which the
operator is 0.22 or 5/3 has no intuitive meaning.” (op. cit., p.4)

Our identification of the difficulties that might arise from applying a whole-part
model to [2.7] problems is in resonance with the interpretation provided by Fischbein and
his colleagues to the difficulties they identified. Moreover, it is an integral part of their
interpretation that the “...Identification of the operation needed to solve a problem with two
items of numerical data takes place not directly but as mediated by the model” (ibid.),
which means that the phenomenon they identified can be examined as an instance of
non-algebraic thinking. From this viewpoint, the fact that *“...the enactive prototype of an
arithmetical operation may remain rigidly attached to the concept long after the concept has
acquired a formal status” (ibid., pp. 5-6) is reinterpreted in two ways8:

o that the enactive prototype remains attached to the concept (at least in relation to
contextualised problems) is seen as a consequence of rather than a cause to the
preferential use of non-algebraic models; the properties of the operations that
will be reinforced — and will thus remain characteristic of the use of the

operations in such situations — are those that correspond well to, for example,
whole-part models: Fischbein’s repeated sum corresponding to our “counting
multiplication”, and division as “sharing™;

« if what is meant by “acquiring a formal status” is understanding the
reversibility of operations, then it is clear that the use of non-algebraic models
would account for the observed effect, once something that would be
meaningful in the Semantical Field of numbers and arithmetical operations has
to be blatantly overlooked for the [2.7] problems to have a higher degree of
difficulty; if on the other hand it simply corresponds to ““...the learner has had
solid formal-algorithmic training” as quoted before, it then means that the

8The primary aim of reinterpreting Fischbein’s findings in terms of our framework is not to
add directly to them-—although we think we do, but part of our effort to bring together
several research findings of interest for the rescarch on Algebraic Thinking, providing a
common explanation in terms of our framework.
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operations are not used in the problems with this same generality because the
models used do not have the required generality, and we have shown that this
is the case with whole-part models.

Bell et al. (1989a, p. 438) criticized Fischbein’s Theory of Intuitive Models, saying
that
“..First, although its basis is the children’s assomed perceptions of the
structural properties of the operations, it can only be made consistent with
experimental results by adding an extrancous hypothesis; second, numerical
perceptions involving the ignoring of decimal points cause conflict with its
predictions. These considerations suggest that the theory gives insufficient

weight to pupils’ numerical, rather than structural, perceptions” (our emphasis)

and developed a Theory of Competing Claims that takes Numerical Preferences as the
most significant factor in determining the choice of operation. By considering four possible
aspects of solving the problems, rather then focusing in only one as the Theory of Intuitive
Models does, the Theory of Competing Claims produces a much finer analysis, with a
much more precise adjustment to the experimental data. It is true, however, that the
difference between the results of the two analysis is one of degree of precision rather then
one of major conflict?. Moreover, the Numerical Preferences hypothesized in Bell et al.
(19894, p. 438) — “...preferences for dividing the larger by the smaller number and for
multiplying or dividing by an integer...” — can be put, ai least pariially, into
correspondence with Fischbein’s preferred models10,

There is an important point to be examined here. Both Fischbein’s and Bell’s
models consider only the case where the operations have a “structure’” (Bell) or “model”
(Fischbein) associated to them. But if we are examining the choice of operation, then one

of the following cases must apply: (i) the subject solving the problem simply “scans” the
list of all calculations - arrangements of numerical data and arithmetical operations -— until
one is found that seems to be a correct choice, or (ii) the subject produces a model of the

9Where Bell’s analysis produced four clearly distinct levels of difficulty, Fischbein’s analysis
produced only two, without-however any major inversion on predicied levels of facility, ie,
if question A is at a lower level than question B according to Fischbein, it is never the case
that B is at a higher level than A according to Bell’s analysis. (sce Bell et al., 1989a, pp. 441-
442)

Ypreference for multiplication by an integer corresponding to the repeated addition model,
and preference for division by an integer corresponding to the sharing model.

v
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situation given — in many cases a partial model only -— and on the basis of the
model decides which operations could and should be used; it is only then that this or that
operation will be seen as suitable or not. On the first case, numerical aspects — which
account directly for three of the four aspects examined by Bell - would certainly constitute
a strong factor.

In the second case, we argue that there are two layers of behaviour. At the first
level, the subject tries to make sense of the situation and to produce a model that seems
adequate. If she or he considers to have found a suitable model, the solution proceeds by
manipulation of the chosen model; the use of an operation is suitable or not only in relation
to this model, ie, it depends on whether or not using it makes sense in the context of the
semantic framework of the model, The solution process might be eventually blocked if the
model can not be purposefully manipulated by the subject any further, At a second level, if
and when the subject does not produce a model that works in a satisfactory way for her or
him, then other aspects come into direct consideration to guide the choice of operation (for
example the fact that buying 0.75 pounds of flour must cost less than buying one pound
together with the belief that “division makes smaller”, makes division a natural choice).
This is not to say that such factors play no role in the elaboration of the model, but only that
their influence is direct or indirect — and thus more or less diluted —- depending on the
level one is working at.

This formulation of the process shifts the focus of the analysis from limitations
intrinsic to the operations to limitations to their use created by the purpose with which they
are used. With non-algebraic models, the purpose would be to evaluate parts as required by
the manipulation of the model; with algebraic models, the purpose would be to produce
new numerical relationships of required forms, by transforming previously produced
relationships; when a structure fails to be produced, operations are chosen as to produce
(psychological) contentment in relation to the expected outcome of the problem. It is clear
that the last of the three situations is the one where Numerical Preferences — in Bell’s
sense - are bound to predominate.

Moreover, this approach enables us to understand beyond “arithmetical ability”
(performing the operations with different kinds of numbers) the difficulties here
examined.!1

11This is a very adequate outcome of our approach, Fischbein (1985, p.4) reminds us that
“Te say that multiplication by 0.22 or 5/3 has no intuitive meaning is not to say that it has
no mathematical meaning. Children may know very well that 1.20 x 0.22 and 9 x 5/3 are
legitimate mathematical expressions”, and Bell's study (1989a, in particular figure 1, p. 440)
shows that although performance improves with age (which most certainly means, in the
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The results of a second study presented on the same paper (op. cit., pp. 444-447)
also offer some support to our interprctationlz,

“The making of a correct estimate depends on a correct perception of the
operational structure of the problem, This does not necessarily require
identification of the numerical operation needed to calculate the exact result. We
know from the numerical misconception MMBDS that pupils must have an
awareness of the size of the expected answer before making a choice of operation.
We suggest that in division problems and problems involving multiplication by
numbers less than 1, the estimate is made directly by a semiqualitative ratio

comparison, without explicit identification of the division operation”,
suggesting that modelling happens prior to the choice of operations.

On the basis of our analysis a local hierarchy can be established for the Tickets and
Driving problems: |

» if the model used is totally algebraic, with respect to both setting and solving
the equation, then the degree of difficulty is the same for all four problems;

o if the model used consists of setting the equation as a description of a
non-algebraic structuring, and then solving it algebraically, then [4] problems
are easier than [2.7] problems;

»  if the model used is purely non-algebraic, then [4] problems are significantly
easier than [2.7]' problems.

It is against this local hierarchy that we will examined the preferred models used by
the students.

case of the study’s sample — all engaged in formal education — improved
“arithmetical ability”), similar difficulties occur throughout the whole range of age
groups.
12This becomes even more clear if one substitutes “... a correct perception of the
operational structure of the problem™ by “ ... the perception of an adequate operational
structure for the problem.”

£
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GENERAL DATA ANALYSIS

As it is clear from the data, the [4] problems were much more accessible to the
students than the [2.7] problems. This is true not only for the overall numbers, but also for
each of the four groups.

A possible explanation for such a difference in the facility levels would be that the
decimal numbers introduced difficulties with the actval calculations. This is not the case,
however, because: (i) errors in the calculations were not considered as errors when the
overall procedure would lead to a correct answer were the calculations correctly performed
(Alessandra A, ABID, and (ii) the students either used calculators or were told that
calculations could be just indicated if they felt it was too "hard” to do. There is also the fact
that 32% of all wrong answers to T2.7 and 45% of all wrong answers to D2.7 resulted
from dividing the total by 2.7 instead of 3.7 .
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Alessandra A - D2.7

It is true that the decimal numbers could have affected the use of a trial-and-error
strategy. However, the percentages of T&E solutions are very low both for [4] and [2.7]
questions, which indicates that this negative effect is totally negligible (in fact, the higher
percentage of T&E solutions appears exactly for T2.7 - 8% overall).

In all four groups, solutions for the [4] problems depended less on an algebraic
model being used for a correct answer to be achieved, as it is indicated by the fact that the
percentages of correct algebraic solutions in relation to the total of correct answers is
smaller for the [4] problems than for the [2.7] problems (41% for T4, 21% for D4, 71%
for D2.7 and 53% for T2.7). In FM2 this is not strictly true because the percentage of
correct algebraic solutions for T2.7 is zero, but given that the level of correct answers is so
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low (6%) — and all of them obtained through T&E — the dependence on an algebraic
model —- or to put it another way, the inefficiency of other models — is also established.
The same observation is valid for FM3 in relation to D2.7, but not in relation to T2.7 .

The distinctive aspect in FM3-T2.7 is that the percentage of T&E correct solutions
is much higher than in the other three groups, accounting for 56% of the correct answers.
The same group produced no T&E solutions for D2.7 and one explanation is that the
numbers in T2.7 are far more “triable” than those in D2.7 . However — and from the
viewpoint of our research this is more relevant — the percentage of “+3.7” (correct)
solutions is only 16%, with no correct algebraic solutions, which would produce, were it
not for the T&E answers, a very low level of correct answers.

Central in respect to this group of problems, the percentages of correct answers are
significantly higher for {4] problems than for the corresponding [2.7] problems, which
indicates, in the light of our previous analysis, a clear tendency towards non-algebraic
models.

This finding 1s supported in a more direct way by the fact that:

»  differences in percentages of “+3.7 or 5 (correct) solutions for corresponding

[4] and [2.7] problems are also very significant (below 25% only for AH8-T4
and T2.7; to AHS8, however, corresponds the highest percentage of correct
algebraic solutions for T4, 73%), and

< whenever there is a significant difference in the percentages of correct algebraic

solutions to corresponding [4] and [2.7] problems, the balance leans towards
the [4] side.

STUDENTS' SCLUTIONS

A number of solutions involved the whole-part models examined in the previous
sub-section. With Tickers problems this meant for example, stating that “there are the
equivalent of 5 tickets in the sum” (David W, F3A; Sergio R, HS8I),
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David W - T4
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Sergio R - T4

and with Driving problems, “splitting” the journey into 5 sections or parts
(Elizabeth W, F3B; Clare B, F3B; Jack D, F3B; Jacob B, F3A).

Jack D - T4
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JacobB - T4
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Elizabeth W - T4

The use of diagrams not only shows how parts and sections themselves are taken as
objects, buat also emphasize how difficult it would be to use this model in a {2.7] problem.

One “calculations only” solution to T2.7 shows, on the other hand, how close it
may be to an algebraic solution that does not employ algebraic symbolism (Nick P, F3B).
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Nick P - T2.7

This is a particularly interesting instance: Nick’s solutions to a “secret number”
problem corresponding to 6x + 165 = 63 shows his awareness of treating numerical
relationships in purely numerical terms, but nevertheless, his scripts also show that he
never spontancously produced numerical relationships to model problems that had not one
already given in some explicit form (the “secret number” problems, for example). Another
script, however, shows us the opposite case: Jenny G (F3B) writes down an arithmetical
sentence that correctly models the problem, but fails to go any further (supposedly for not
knowing how to derive the value of the question mark from that expression).

P (7 xa) = bl

Jenny G - D2.7

Each of those students’ cases illustrate an aspect of embryonic algebraic thinking:
Jenny’s awareness of the numerical model; Nick’s awareness of the purely numerical
treatment of numerical relationships. It is the fusion of those two aspects that produces the
algebraic solution in Vanessa J’s (F3A) script.
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Vanessa J - T4

’
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Flavia C (A7I) and Alex K. (A8I)! correctly set and solved equations, as did
Carolina R (HS8I). It is important to notice, however, that Carolina’s equation derives
from an initial representation of the problem that is different from Flavia and Ernesto’s.

While they thought in terms of “what composes the total”, she thought in terms of “‘what is

left after the first part of the journey”. However derived from different initial readings of a

whole-part scheme, the three solutions converge as they reach a point from where they are

only concerned with operating within the realm of numbers.
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Another group worth examining is that of wrong solutions in which standard
algebraic notation is employed. In two of our examples (Adriana V, A8I; Ana C, A8I), the
initial equations correctly model the problem’s situation, but they are dealt with in an
incorrect way: there are technical errors.
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On the other two examples (Vinfcius G, A8I; Adriano 1, A8l), the initial equations
do not model the problem correctly, but this time they are correctly solved: there are
modelling errors.
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What is common to all the four solutions is the assumption that by modelling the
problem with a numerical relationship and then numerically manipulating it is an acceptable
method for solving the problem.

SUMMARY OF FINDINGS AND CONCLUSION

We think that the most important aspect in relation to this group of problems, is that
it provides direct and clear illustration of different ways of modelling an "algebraic verbal
problem," both algebraic and non-algebraic, particularly throwing light in the use of
whole-part models, the superficial similarities and the deep differences between those
models and algebraic ones.

It became clear that the choice of operations used in the solution process was mostly
secondary to the modelling of the problem. In the case of algebraic solutions, it is the
arithmetical articulation, as discussed in chapter 3y that informs the solution; in the case of
whole-part solutions, it is the composition of the whole in terms of its parts—the
whole-part articulation.
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It was important to see, in Ticket[4] problems, the transformation of the more
expensive ticket into "four tickets,'

ie, the application of the whole-part model
independently from a "geomeiric" representation, indicating that those models are not
simply a direct representation of the objects of the context; this suggests the possibility of
the existence of a more general underlying model, in which case we would have a bigger
obstacle to the development of an algebraic mode of thinking than if it were simply the case
of totally contextualised solution, as an already established general model—even if not
explicitly stated—would "compete” with the newly offered algebraic one. On the other
hand, the teacher may take this to her or his advantage, by making the underlying
whole-part model explicit, so it can be compared with algebraic models and the differences
clearly established.

The fact that {2.7] problems are so more difficult if a whole-part model is used, can
be understood in relation to the way in which the numbers involved are understood. Used
with T&D problems, whole-part models impose a distinction between "the numbers that
count the number of parts” and "the numbers that correspond to each part.” Because the
"unknown" parts are never dealt directly with, the notion of number that dominates in the
model is that of counting number, and this clearly makes whole-part models not applicable
at all to [2.7] sitoations. It is likely that teaching aiming at developing an awareness of the
fact that, say,

2.7 x price per pound=price of 2.7 pounds
would significantly enhance the performance in [2.7] problems, but, as we have already
indicated, the justification of such knowledge in terms of a decomposition of the decimal
"coefficient" is far from immediately visible, so this seems to be an area to which anyone

developing a teaching approach for the teaching of algebra has to pay careful attention.

Finally, the scripts in this section show ways in which, as we had indicated in the
theoretical analysis of possible solutions, equations of the type

ax + bx=¢, a and b positive integers
can be modelled back into a whole-part model, but not if a or b are not integers; for the
teacher or rescarcher, the fact that the model used can be completely hidden behind the use

of "algebraic notation," indicates that it is not enough to suppose that the ability to solve
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equations of the type above imply the ability to solve the case with at least one of a and b
non-integer.

We think that this is an extremely important result of our study, as it clarifies the
inadequacy of "starting with examples with simple numbers" approach in the specific case
of the types of equation involved in the solution of the problems in this section, but at the
same time pointing out that a general problem exists in this respect, and that the underlying
model has to be examined if we are to understand students' difficulties in learning algebra
and in developing an algebraic mode of thinking.

4.3 SEESAW-SALE-SECRET NUMBER PROBLEMS

THE PROBLEMS

Tam thinking of a “secret" number.
I wiil only tell you that ...

181 - (12 x secret no.) = 128 - (7 x secrel ne.)

‘The question is: Which is my secret numbes?
(Explain how you solved the problem and why you did it that way)

SN1 Problem

Goorge throws away 1 bricks and Sam

S plus bricks throws away § bricks.

169Ky}

What i5 the weight of ane brick ?
{Explain how you solved the problem and why you did it that way)

Seesaw 11-5 Problem
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o P ky

< o
Sam plvs bricks ;J George throws away four times as

189 '3 _..,__‘I J, much weight as Sam does.

Now they arc balanced.

How many kilograms did George throw away? And Sam?
(Explain how you solved the problem and why you did it that way)

Seesaw 4x Problem

Maggie and Sandra went to a records sale. .
Maggie took 67 pounds with her, and Sandra took 85 ponds with her (a lot of
moneyt!).

Sandra bought 11 Lp's, and Magpie bought 5 Lp's.
As a result, when they left the shop both of them had the same amount of

money.
whot & the prce of on Lp?

(Explain how you solved the problem and why you did it that way)

Sale 11-5 Problem

Maggic and Sandra went to a records sale,
Maggie took 67 pounds with her, and Sandra ook 85 pounds with her ( lot of
money!!).

Sandra spent four times as much money as Maggie spent.
As  result, when they Iefs the shop both of them had the same amount of

money.
How much did each of them spend in the sale?
(Bxplain how you solved the problem and why you did it that way)
Sale 4x Problem
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GENERAL DESCRIPTION

This group of problems consisted of five problems, four of them contextualised
(two contexts, Seesaw and Sale) and one “secret number” problem, where the problem
condition is given in the form of a “syncopated” numerical equation,

Both Seesaw (E) and Sale (A) problems were presented in two distinct ways.

The first one gives the relationship between how much each of the two persons
involved “threw away” (for E problems) or “spent” (for A problems) in terms of number
of pieces ([11-5] problems). The second one gives that relationship in terms of ratio ([4x]
problems).

Giving the relationship in terms of number of pieces sets the number of unknowns
in the problems to only one, namely the weight of a brick or the price of an Lp (or a T-
shirt, in the case of the Bra?ilian 1ests).

On the case of {4x] problems, on the other hand, they primarily involve two
unknown quantities, linked by the given ratio, and the reduction into a problem with one
unknown is a necessary step towards a correct solution of the problem, a step that involves
a substitution.

The SN1 problem was included in this group for the reasons already discussed in
the introduction to this chapter.

On the Brazilian tests, Sale problems had numbers significantly larger than those
on the English version, due to the necessity of adjusting the context to Brazilian prices.
This may have discouraged trial-and-error solutions, but in any case trial-and-error
solutions are not common in Brazilian classrooms, being in general explicitly characterised
by the teachers as a “non-solution”, and are not accepted by most teachers as a valid answer
in a test. Although we insisted with the students that any method would be accepted, we
expected a very low level of trial-and-error answers from the Brazilian grouf)s — what
actually happened — so the effect of larger numbers would be insignificant. We also chose
to use “T-shirts” instead of “Lp’s” because buying the former is a more usual activity for
those students.

DISCUSSION OF POSSIBLE SOLUTIONS

Strictly speaking, [4x] problems are modelled algebraically by the set of equations
a-x=D>b-y
y = 4x

while [11-5] problems are modelled algebraically by
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a-1lx=Db- 5x

From this point of view, [4x] problems are intrinsically more difficult than [11-5]
problems.

However, it is possible that the given ratio is used to produce a direct parts
substitution (“one lot and four lots™) or a direct numerical substitution (“a number, four
times a number”), thus reducing {4x] problems to the algebraic form

a~x=b-4x
without going through the set of equations. From then on, both problems would be equally
difficult from the algebraic point-of-view.

We expected non-algebraic solutions to fall into one of two main categories:

(1) a qualitative analysis of the situation, for example,

“1f George’s side was heavier but now they are the same, it must be because the
amount George threw away in excess of what Sam did
corresponded to the original difference between the two sides.”

In this case, two subtractions would be performed in order to evaluate the original
difference in weight and the number of unifs put away in excess, and then a division, in
order to evaluate how much of the original difference corresponds to each unit thrown
away in €xcess.

(1) a comparison of wholes strategy, supported or not by a diagram (fig SSE 1)

Fig SSE 1
Here two subtractions would also be performed, this time in order to evaluate the
difference between the two wholes and the number of units “missing” on the smaller of the
two wholes, and then a division, in order to evaluate how much of the difference
corresponds to each unit .
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The Secret Number (SN1) problem can be seen in three very distinct ways.

1) as an equation in syncopated form, in which case the numerical relationship
could either be (1a) manipulated algebraically, or (1b) modelled back (for example, a scale-
balance situation) and the resulting model manipulated to produce the answer .

2) as a template, providing a condition that has to be satisfied by the secret number
but no information as to how to find it;

3) as a compact description of a whole-part model situation—eg, the one described
some paragraphs above—that can be manipulated to find the required number. It is
important to emphasise that this does not mean modelling back a numerical problem, but
actually seeing it that way from the beginning. The subtraction signs are literally
interpreted as “separating” or “removing” from the unequal wholes, an action that
produces two new, equal, wholes.

There is a subtle but important difference between (1b) and (3). In (1b) the
numerical relationship is recognised as such, although as a “by-product” of modelling a
situation, and an effort is made to model it back into a setting where manipulation is
possible; in (3), however, the arithmetical symbolism is never seen as such, once the
expression involves an unknown number that cannot be used in calculations, and even
worse, this number appears on both sides of the equality sign, completely removing any
sight of a “result”, and thus, any sight of “calculations”, Instead, adding is seen as joining,
subtraction as disjointing or separating or taking away, and multiplication as grouping that
many lots or parts. : 7

A study by John Mason (1982) reveals not only that symbols for arithmetical
operations are easily used with this interpretation by young students, but also that when
used in this way they might evoke properties different from those evoked by the
arithmetical use, as in, for example, when trying to symbolise the Cuisinaire rods
configuration in fig. SSE 2, where

3 x 3blacks and 2Zwhites
can be consistently interpreted as
3(3blacks+2whites)
even in the absence of the original configuration (a correct interpretation in the context of
the activity), but
3 x 3blacks + 2whites
might be interpreted, in the absence of the original configuration, as
(3 x 3blacks) + 2whites

’
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Fig SSE 2: configuration of rods to be described

The stronger bond produced by “and” is in correspondence to its use in normal
speech, where in a phrase like “Sam and George’s excellent performance!” the judgement
is immediately seen as applying to both.

The use of non-algebraic models is bound by the necessity of maintaining a
dimensional homogeneity when using addition and subtraction, ie, as far as the operations
are used to evaluate a total or a difference in measures, the two operands must be seen as
having the same dimensional type, once they are seen as measures. Algebraic models, on
the other hand, avoids this concern by introducing a homogeneity in numbers that can be
sustained throughout exactly because of the internalism characteristic to thinking
algebraically. Dimensionality does not belong to the scope of algebraic thinking. This
characteristic of the manipulation of non-algebraic models can serve, for example, to
indicate the inadequacy of performing certain calculations (for example, on E11-5
problems, the inadequacy of subtracting 11 (the number of bricks Sam threw away ) from
273 (the initial weight on Sam’s side)).

One aspect of algebraic and non-algebraic solutions 1s of special interest in relation
to this group, because it is well recognisable in the range of different solutions to this group
of problems.

In the general characterisation of our framework we have indicated that algebraic
solutions are analytical. Moreover, we have seen that all the problems in this group can be
correctly modelled by a numerical equation of the form

a-bx=c-dx

Because the unknown appears on both sides of the equality sign, an algebraic
solution to this equation cannot avoid manipulating the unknown, ie, adding or subtracting
terms involving the unknown., But this is not an intrinsic characteristic of the relationship, it
is rather a consequence of the analytical character of the algebraic method, of the need —
80 to speak — to express the unknown (required) number in terms of known numbers and
operations on them.
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We have also shown that the problems in this group, including SN1 — and very
similarly the above equation when b and d are whole numbers — can be modelled into a
whole-part model, and that the manipulation of such model to produce the required number
or measure completely avoids manipulating the unknown by producing successive
evaluations of unknown measures from known ones, until one finally reaches a step where
the unknown (required) measure is evaluated. Again, this is not a characteristic of the
whole-part model itself, but of the synthetical character of non-algebraic methods.

Research on the solution of equations has indicated that there is a “didactic cut” in
the passage from manipulating equations where the unknown appears on one side only of
the equal sign to manipulating those where it appears on both sides, and that this cut
corresponds to the “...need to operate on the unknown in the solution of {such] linear
equations” (Gallardo, 1987).

Our analysis above indicates that the root of the difficulty with unknowns on both
sides might lie on the fact that non-algebraic thinkers operate syntherically thus not
operating with unknown values, ie, an important part of the strategy required to solve
algebraically those equations does not fit into their normal, general framework. Also, it
could be that the process of translating back a numerical equation with unknowns on both
sides of the equal sign into a non-algebraic model is too difficult because of the complexity
of the required models, and building some expertise on the process depends on a
reasonable amount of experience. Nevertheless, students can be taught translating back
skills (Gallardo, 1990).

Gallardo’s example on page 44 (op. cit.) is particularly insightful, and we will
examine it in some detail. It is about a student that had been taught to solve equations of the
type

ax + b = ¢cx + d, a>c , bed, a,b,c,d>0
by “...translating the equation’s elements into a geometrical situation, where ﬁgures with
equivalent areas were involved” (ibid.) (fig SSE 3).

a C

fig. SSE 3

When she had understood this model, she was then given the equation
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9% + 33 = 5x - 17
which she modelled using the model taught with an “invention of her own”: the subtraction
of 17 was taken as meaning the removal of a piece of the area equivalent to 5x. (fig SSE 4)

i?

33

fig. SSE 4

The student manipulates this model to arrive at
4 + 33 + 17 =10
corresponding to fig. SSE 5, and then a block occurs, because she is not willing to accept
the negative solution.

“% - y 17

5 4 5

fig. SSE 5

This example is insightful, in the first place, because it suggests that the refusal to
accept a negative answer is due to the fact that the “x” is representing the measure of a side
in the figures, and thus can be but a positive number. In the second place, it shows the
extent to which such solution is dependent on propertics of the geometrical configuration,
ie, the geometrical configuration is not just a support diagram to help to keep track of a
reasoning that is “in essence” identical to the one behind an algebraic solution. Finally, this
example supports our suggestion that the process of rranslating back is far from simple and
straightforward, as finding a similar geometrical configuration to model and solve an
equation like

173 - 5x = 265 - 1Ix

Experimental Study 197



would certainly involve either a reasonable amount of experience with such models, having
being taught the configuration as a “solution formula™, or a high degree of ingenuity!3,

On the basis of our analysis of the problems, we hypothesized that:

A) [4x] problems might be more difficult to solve than [11-5] problems for a
student using a non-algebraic approach, because [11-5] problems provide objects (bricks
or Lp's) that can be immediately seen as parts, while on the case of [4x] problems one has
first to establish a unit (more easily, how much Sam threw away or how much Maggie
spent) to be then manipulated as a part and to represent the “4 times” as “4 parts” or “4
lots™;

B) [4x] problems might be easier to solve if an algebraic approach is used rather
than a non-algebraic one, because the “4 times as much” statement would suggest within a
Numerical Semantical Field — by suggesting a multiplication — the correct “unknown, 4
times the unknown” structure; this approach reduces the difficulty of having 1o establish a
unit, once seeing the “4 times as much” -— times indicating a ratio — as meaning “4 times
the other amount” — fimes indicating multiplication — immediately entails the “other
amount” that is to be multiplied as an object (multiplication requiring two numbers to be
performed). The predominant use of an algebraic approach within a group of students
would thus reduce the difference between the facility levels for [11-5] and [4x]
corresponding problems,

C) SN1 problems would be exiremely difficult to solve using a non-algebraic
approach.

GENERAL DATA ANALYSIS

One aspect of the data is helpful in understanding other aspects on the data, so we
examine it first.

For both Brazilian groups the SN1 problem had the highest level of facility among
the problems in this group (43% for AH7 and 88% for AHS), all but one of the correct
solutions employing equations. On the other hand, for both English groups the SN1

PThe degree to which this is true can be easily verified by trying to produce such
configuration and to selve the equation using it. It was not immediately that 1 found a way
out of it myself.
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problem had the lowest facility level among the problems in this group (4% for FM2 and
15% for FM3); four of the seven correct answers employed equations.

Those numbers are a direct indication of the extent to which Brazilian pupils dealt
better with equations than their English counterparts, once eventual difficultics with
modelling the problem onto an equation are almost reduced to none. More important here,
however, is the fact that solving SN1 problems depended so heavily on the use of
equations.

Only 4 students on the combined FM2-FM3 group (75 students solving SN1
altogether) tried to use an equation with SN1 and failed to solve it correctly. Together with
the very low level of success on SN1 that suggests that students on the FM2-FM3 group
were predominantly trying to use non-algebraic methods to solve SN1 problems.

Another aspect of interest arising from the data is the use of equations on
corresponding {11-5] and [4x] problems. In almost all cases — the exception being A11-5
and Adx for FM3, where the use of equations was nil for both problems — the percentage
of correct solutions using equations is higher for {4x] than for [11-5] problems!4, This
indicates that algebraic solutions do belong to a Semantical Field where numerical
relationships are meaningful by themselves, as the suggestion of the multiplication seems to
be the factor that triggered the choice of an algebraic solution.

More support for this interpretation can be drawn from the fact that on the AH7
group the bulk of the correct answers to [11-5] problems came from non-equation solutions
but all the correct solutions to [4x] problems used equations. Algebra is systematically
introduced only on the 7th grade of Brazilian schools, usually later on the first half of the
academic year; thus, seventh graders can be considered well informed and somewhat
skilful in solving equations, but not yet deeply committed to using equations whenever
they are given a verbal “algebraic” prbblcm. This can be also seen in the fact that in all of
the four contextualised problems, most of the incorrect solutions on the AH7 group do not
attempt to use an equation and most of the incorrect solutions on the AH8 group do
represent a mistaken use of equations. This suggests that for the Brazilian 7th graders the
“default” approach is non-algebraic, and for the 8th graders it is an algebraic one, namely
the use of equations.

Y4This difference is significant on the Brazilian groups, although it is not significant on
the English groups due to the very low level of correct answers using equations.
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The use of algebraic methods resulted — as we have predicted — in very similar
facility levels for three out of four pairs of corresponding {11-5] and [4x] problems on the
Brazilian groups, while on the English groups [11-5] problems were always significantly
easier than the corresponding [4x] problems.

On the Brazilian groups SN1 has a high facility level, and the lower levels of
correct answers to the four contextualised problems indicate difficulties with modelling
them with an equation, ie, with establishing a correct arithmetical relationship; this is even
more evident as we look at the percentages of incorrect solutions involving equations at
AHS, that “by design” (curriculum) is bound to use equations more than AH7. On the other
hand, on the English groups SN1 has a low facility level, and the differences between
corresponding contextualised problems reflect difficulties in seeing meaningful
relationships between the elements in the context of the problems.

The former difficulty might be seen as having a greater degree of complexity, as
one would have 1o make sense of the structure of the given situation and then transform it
inte a numerical-arithmetical problem. However, the mode of thinking in which one is
operating is of substantial importance in determining for a given problem the degree of
difficulty in understanding the structure of a problem. The fact that a person is aiming at
transforming a contextualised problem into a numerical-arithmetical one may be, as we saw
in relation to [4x] problems, of great help in making sense of a structure for the problem,
which shows that difficulties with the algebraic approach do not represent the simple
accumnulation of the numerical difficulties on the top of other difficulties in understanding
the structure of the problem.

STUDENTS' SOLUTIONS

The SN1I problem

All of the 43 OKEQT solutions by Brazilian students (of a total of 71 students
presented with the question) used standard algebraic symbolism while the three OKEQT
solutions by English students (out of 75) employed “secret no”, “sn” or “?”. In itself this
suggests that the use of a special form of symbolism, rather than syncopation or the
“jconic” interrogation mark might become a significant factor in establishing equations as
recognisable——and thus acceptable and capable of being manipulated—mathematical
objects. This suggestion is supported by a number of explanations presented with the
solutions (Bartira G, AH7; Ana B, AH8; Eurico G, AHR):
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Ana B, AH8: “I replaced the “secret no,” that is in the Aint by x and then

transformed the hint into an equation and solved it until I found out the x.” (our

italics)
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Eurico G, AHS8: “I took the given formula and replaced the secret no. by an
unknown, after this [ moved the unknowns o one side and the numbers to the

other, then it was just a matter of completing [the solution).”
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In 19 out of the 43 OKEQT solutions by Brazilian students, an intermediate form
is produced between the problem’s statement and the equation in its standard form, putting
12x and 7x or 12 x x and 7 x x in brackets (as Bartira G, AH7, script already shown,
did), an aspect that also supports that suggestion.

In 23 OKEQT solutions by Brazilian students, the following line appeared:
-8x = -53
instances showing that in algebraic solutions the meaningfulness of each expression
produced is related only to the perceived correctness of the process that produced it, ie, the
internalism of thinking algebraically.

A variety of algebraic techniques appeared on the OKEQT scripts:

(i) multiplying both sides by (-1) to get rid of the negative signs (Claudia F, AH7)
or to transform the side of the equation containing terms in the unknown into a
more appropriate form (Andrea M, AHE),

181 (42 x 2) = 138-(Fx 2} Teapoile - @ rilmend ecuto "o’ 10,6
18412 % = 128 -

tax A dx =128 - 181 _ ExpLicgAo” Tando ol f“%‘““u’
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4_(.-5-,_*)5-4,(‘,55\ o madlodeo s © ridren
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x= B3
5 x=10,6
Claudia F, AH7

I%-12n= £§-Fn oo o —VMA/V\»CAQQQG‘A sta oma ax-

124 = 2818 (4-) P"‘W G o] f‘ﬂOcaAa pedoaro v
2n-Hn = 12816l SLLtO PO MG uapsidivel QUAIqut L

oy = 53 W ponle bmuamhmwxw.
n =10, ' :

Andrea M, AHS8
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(1) directly performing the division (-53)+(-5), without first performing the step
described on the previous item (Ernesto K, AH7);

194 = {20c = 125 2 [

_AF).
~ 4z 43 =11+ 128 {z.8

—ba =53 “6?
X = ~&53:(-5) géo'@
XL = 10,4 o 106
Ernesto K, AH7

(iii) transforming the equation into a standard form (ax + b = 0, Ana B, AHS8
script already shown on this section), (ax + b = cx + d, Robert M, FM3)

i

|g.m(ll><5€cfefr\o ‘2-8*(‘7’(8&(61& f‘o)

51 — 1S —~(“’l“x &a@tm
W‘?\“I% s N

LS € 0ZES )
TSz (IS8 = 12 xsn -
%ST = TSI SH : T
m-g-"' .-_:’ VnM, T
SN T 10 S
Robert M, FM3

(tv) cxpressing the answer both as a fraction or as a decimal number

One solution is of particular interest (Nick A, FM3). Apart from the use of “?” for
the unknown, it seems to present us with a mixed solution. The first step,

181 - 12x? = 128 - 77

181 - 52 = 128
could be seen as the result of an algebraic manipulation. The second step, however,
181 - 5?2 = 128
181 - 128 = 53
5? =

= 83
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seems to be based on a whole-part modelling of 181 - 57 = 128, once no intermediate step
is provided except the evaluation of 181-128, and the transformation seems to be a direct
one. Whether the first step was also based on a non-algebraic model, nothing can be
concluded.
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Nick A, FM3

From all four groups (a total of 146 students presented with the question) there
were only five OKCALC solutions to SN1. This immediately indicates that to model
SN1 into a non-algebraic model was a very hard task for those not able to use an algebraic
one for whatever reason,

Of the five OKCALC solutions, Elizabeth W’s (FM3) was certainly the most
peculiar. First, because she does produce the right number, using the most direct
calculations possible, only to “conclude” that — for some unexplained reason — 10.6 is
not the secret number. Second, for the rationale to her choices of subtractions (181 is
bigger than 121 and 12 is bigger than 7”). However, it is difficult to see why she chose to
divide 53 by 5, and not to perform some other operation. The numerical preference “divide
the bigger by the smaller” cannot provide a justification for the choice of a division itself,
and we are led to believe that she did have the insight of an underlying non-algebraic
model, and she so expressed herself because she was not able to make the model explicit
— even to herself. Another interesting aspect is that she never thought of trying the 10.6
she thus obtained to see if it “worked”, saying instead that she would use a trial-and-error
approach.
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Elizabeth W, FM3

Two of the remaining four OKCALC solutions (Fabiana M, AH7; Gareth A,
FM2) do not provide us with information enough to decide whether they represent non-
symbolic solutions of an equation. Even if they are not, this is probably as close to it as we
will get, once Gareth actually produces a standard equation (replacing “secret no.” by “x”)
and Fabiana says “to know the difference between known numbers and between unknown
numbers and divide them”, Another possibility would be, as we have already seen, to
reason in a manner similar to that described as possible non-algebraic solutions to the

contextualised problems, only this time reasoning with the numbers themselves:

“The amount of secret nos. that is taken in excess from the left-hand side must

be the diffcrence between 181 and 1287, eic..

and this seems to be exactly the model used by Joe V (FM3) and Jacob B (FM3).
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Fabiana M, AH7
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Jacob B, FM3

There were altogether 11 WEQT solutions. In three of them the original equation
was correctly manipulated up to a point, and then the solution process was halted. In one
case (Russell P, FM3) the difficulty came when he reached the equation

53 - (§x8) = 0 (s)

to conclude that s=53. It appears that the difficulty lied in perceiving that 0s=0.
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Russel P, FM3

One student, Shelley S (FM2, script not shown), replaced “secret no.” by “x” but
failed to go any further.

Jack D (FM3) tried to apply a scale-balance analogy. It is interesting that he stopped
(and crossed out his previous efforts) when he reached (through a sequence of mistaken
steps) the equation

53 - (§x8N1} = 0

but it is equally interesting to observe that the use of such model produced two mistakes
that are clearly associated with treating the problem using the scale-balance analogy:
(@) the analogy treats the unknown number as the unknown weight of an object;
although the minus sign is kept on the left-hand side, probably meaning “removal”,
a “negative” amount of objects or “removing 7 objects from nothing” does not make
sense in the Semantical Field of the scale-balance analogy. Thus, the minus sign is
simply dropped.
(ii) on the second step, he says “take off 7 from each side”, where the correct
algebraic strategy would be “add 7 [xSN] to each side” or at least — given the
equation on which he was operating — “add 12 [xSN] to each side”. That by
using this incorrect strategy he produces the transformation
53 - (12 x SN1) = (7 x SN1)
to 53-(5xSN1) =0
is enough evidence that the subfractions were thoroughly ignored by being
meaningless in this Semantical Field.

Experimental Study 207




35 -(s ‘nsm) -

Jack D, FM3

There is an important point to be discussed herve. The scale-balance analogy has

been one of the most popular didactic artifacts used to teach the solution of linear equations,

Let us analyse the use of such analogy to model equations of the form

a+ bx =c¢+ dx ,abcd=0

for various sets of conditions for the parameters a, b, ¢, d.

a>c, bed, b and d positive integers (eg, 100 + 10x = 80 + 15x)

On such cases, the analogy thoroughly applies; the plus sign is understood as
conjoining, and thus there is a definite correspondence between the “taking off
weights” strategy on the scale-balance model and the “subtracting a quantity of
x’s” on the algebraic model, and also division corresponding to evaluating a
sharing action,

a>c¢, b>d, b and d positive numbers (eg, 100 + 15x = 80 + 10x)

On this case the analogy simply does not apply: it is not possible to put more
objects on the side that is already heavier and make it balanced. Unless, of
course, that the objects have negative weight, an impossibility within the
Semantical Field of the scale-balance.

a»c, b<d, b and d positive non-integers (eg,......... e
100 + 3.4x = 80 + 7.8x)

The difficulties arising here because of the decimal numbers were analysed in
depth when we discussed the Ticket and Driving problems. The meaning of
“3.4 objects” is not at all natural within the Semantical Field of the scale-
balance, and an extension that makes it meaningful is not easy to grasp.

a>c, b>d, b and d negative integers (eg, 100 - 15x = 80 - 10x)

As analysed with Jack D’s script.
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It is not necessary to go any further. One obvious problem with the scale-balance
analogy is the limitation imposed on the coefficients of the unknown and on the sign of the
unknown itself. Certainly more important, the variety of strategies required to use this
analogy across equations with different sets of conditions for the parameters is in clear
contrast with the fairly reduced set of principles and strategies used with an algebraic
model. As a consequence, the scale-balance analogy is inadequate not only for very
quickly becoming a complex net of what are in effect different models, but aiso for not
fostering a frame of mind adequate for the development of an algebraic mode of thinking.

In the remaining 6 WEQT solutions, the errors are always in the manipulation of
the equations, as in Lilian P’s (AH8) script. Those types of errors are well documented by
research and in teaching practice,

181 - (42 2) 428 (34 2 )

A~ 142x i“‘495?\;,

B3 - 19x 2 O
i ~{@y z 5%
WY = ez, Xz 53
; 12 419

Lilian P, AH8

The 27 WCALC attempts divide naturally into two groups. In one of the groups
(21 scripts), a subtraction 181-128 was always attempted. It is not possible to decide
from the scripts whether those students were producing a first step in the solution of an
equation of the type

' 181 - 12x = 128

temporarily putting away the -7x term, or just “taking away the smaller from the greater”.
In any case, it is clear that manipulating the unknown or even its coefficients in a
meaningful way presented a much greater degree of difficulty. Some attempts proceeded by
dividing 53 —— the result of the subtraction - by 12, which again appears to be the result
of dealing with the incomplete equation above; some others multiplied 53 by 12 or by 7,
clearly for not grasping the structure of the equation. Two students in this group {one of
them Ian C, FM3) produced the subtraction 12-7 but failed to use this information
correctly, which again shows a lack of grasp of the structure of the equation,
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Ian C, FM3

All but one of the remaining students in the WCALC category seem to be merely
attempting to produce a “sensible answer” by trying different combinations of operations
with the nhumbers given. Alessandra S’s (AHS8) attemipt, however, exhibits some intention
to manipulate numerical equalities but no sense of how to do it; it is interesting that she
takes the 7=7 equality as signaling the end of the process, clearly of formal meaning only.

134 -3 = (@F-4 . .

134 = Iy, . O M ssendts e T

70 g~ 9.0y
I T S

€.

Alessandra O, AH8

The Seecsaw 11-5 problem

Only 5 out of 77 students presented with this problem correctly used an equation to
solve the problem (OKEQT solutions); one of them had to be categorised as an incorrect
answer once he simply erased his correct solution (which, of course, still remained
visible). Those solutions do not provide much additional information on the solution of
equations. However, in one script (Andrea M, AH8) we have a quite clear description of
her process of solution. ‘
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Andrea M, AHR

() the brick’ weight is x...

(ii) and to formn an equality we would have to have both weights equivalent...
(iii) as this equivalence was given, ..

(iv) T only had to assemble the two subtraction sums.

(v) the rest is just the process of isolating x, doing the inverse operation.

From considerations involving characteristics particular to the problem’s context—
namely, that seesaws are balanced only when the weight on both sides are the same—she
moves into a numerical-arithmetical context, and then solves the equation. This is, thus, an
exemplary case of algebraic thinking “in action.”

The OKCALC solutions are roughly equally divided between two solving
strategies:

i) qualitative analysis of the situation, as we have already described at the beginning
of the section on this group of problems (Tarek S, AH7, provides a clear written
explanation)

Tarek S, AH7: “Throwing away 11 bricks from one side and 5 from the
other, the difference becomes [equal] to the difference in weight, Then, one has

only 1o divide the weight by the number of the difference of bricks”
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(ii) hypothetical manipulation of the context (Bridget S, FM3). This strategy is
different from (i), as it actually transforms the problem into another one. The fact that the
subtraction 11-5 still had to be performed is not as relevant here as the importance — in
finding a solution -— of the new image generated.

)% - 184 © 2k w6 kg Lbrick = 4tg

LF C'resfge, thipws Gy only b than o 15 equal
a5 Som if o deentt tow auaty Ay so

You subheck 189kg prom 213kgard duide by b bricks

Bridget S, FM3

In no solution a diagram like the one we provided with the comparison of wholes
strategy was produced, and the fact that all OKCALC solutions mention “weight” or
“bricks” or both in association with the numbers produced strongly indicates that it was not
used “in the background” either!5,

In all WEQT attempts we could identify mistakes deriving from a very loose use of
the algebraic notation, :

One student (Fabiola, AH7), first produced a syncopated translation of the problem
(left upper corner), that apparently served as the basis for writing the (correct) equation on
the first line — using a box for the weight of a brick. She then replaces the two occutrences
of the box with their coefficients, by x. The reason is not clear at all, and this is the step
that produces the critical mistake. This script is interesting for bringing together three
different uses of notation: descriptive and both standard and non-standard algebraic and the
urge to use x to make the expression on the first line into a recognisable equation is
Certainly related to the same aspects we discussed in relation to OKEQT solutions to

15We want to emphasise that we have alrcady commented on page ... on the distinction
between  “there is in any case a whole-part structure manipulation™ and “a comparison of
wholes strategy is used™.

We think it would not be an useful approach here, to consider that some form of abstract
comparison of wholes structure was *actvally” used “in the background”. The crucial
distinction belween the comparison of wholes stralegy as we described it, and the two
strategies used by the students, is that the problem is transposed to another — in this case,
more gencral — embodiment, one where the notion of measure is used in a different way.
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SN1. Another good example of a descriptive use of literal notation is found in Marcel §’s
(AHBS) script, who also adds: “Reading and writing in mathematical form” (top, our
emphasis) and “I forgot how to do it with 3 equations [sic]” (bottom)16:17,
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Fabiota, AH7
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Marcel S, AHS

Other mistaken solutions show a combination of loose and incorrect use of nrotation
with poor understanding of the elements and structure of the problem (Marina F, AHS).
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Marina F, AH8

161 Portuguese, * ujolos stands for “bricks™.
1"A/\ithough the expressions are clearly descriptive — for example, by the use of t (“tijolos™)

for both amounts -— the literal notation leads the student to see them as equations. The
usual Brazilian teaching practice puts much emphasis on “doing with letters™ on the one side

and “algebra” and “equations” on the other.
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Many of the WCALC solutions (9 out of 16) are contextwise homogeneous, ie,
the calculations produced always involve pairs of numbers that measure the same kind of
thing (eg, weight). Those solutions were either incomplete (simply subtracted the smaller
weight from the greater), considered that the difference in weight had to be shared between
the total number of bricks involved (Clare B, FM3, a script that illustrates well
contextwise homogeneous solutions), or considered that the total weight had to be
shared between the total number of bricks. Of the remaining WCALC solutions, three
used the representation

189 - 5 = 273 - 11
which seems to be a mere (incomplete) syncopation of the problem’s statement. In two of
the cases it resulted in the focus of solution being totally diverted to the calculations
involved, with no regard for the structure of the problem (Ana F, AHR8). The other student
did not go any further, and this suggests that she kept the awareness that it was only an
incomplete syncopation.

1982
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Clare B, FM3
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382
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AnaF, AHS

The only aspect of interest on T&E solutions, is that none of the students actually
wrote down numerical-arithmetical expressions involving the variable to be tested that
would serve as a template for testing the “guesses”. As we said before, T&E solutions are
in a sense closer to algebraic solutions than non-algebraic solutions, both because the
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original problem is transformed into a numerical-arithmetical one and because the notion of
variable is involved, even if in a rudimentary form; nevertheless, the lack of a
representation of the template makes it difficult for the students to go beyond the trial-and-
error process and to perceive the numerical-arithmetical equality as an object that could be
directly manipulated to produce the required number!8. That those students in our study
had the template represented in some internal form, is out of doubt; Sanjay (FM3) actually
writes down an “algebraic” version of the template to illustrate the condition that his guess
would have to satisfy, and immediately substitutes a value to show it is the correct answer.
The fact that both the templare and the “confirmation” calculations have in fact the
subtractions inverted — but to produce correct results — shows the extent to which the
notation is merely descriptive.

Each bride M{&hs £ e | e Found  answer by
ﬁmlhzg e.sh'md‘hhg a number for e beick 4 carry ovt
tre. calwsdation -
Na-28 Sa-lpq = [lxg -213 Sx4-1%9
= |69 = )69
Sanjay, FM3

Th esaw 4x problem

The OKEQT solutions to the E4x problem do not add much to what we have
already said about OKEQT solutions in the analysis of the previous two problems in this
group. One aspect only is worth mention, that of the three OKEQT solutions coming
from English groups, in only one the use of symbolism is totally standard?®. The other two
solutions use algebraic notation in much less standard ways. Sukhpal (FM3) uses an extra
— descriptive — X to reaffirm to herself that both sides will come to a same total, while
Keith W (FM3) keeps the multiplication sign with the coefficients of the unknown and
mixes lines with an equation with lines with numerical calculations only; his solution does

181n a study by C. Kicran (mentioned in Kiceran, 1988), “those [pupils] who preferred
substifution viewed the letter in an equation as representing a number in a balanced equality
relationship; those who preferred inversing viewed the letter as having no meaning until its
value was found by means of certain transposing operations.”

19Actua11y. this student was a visitor from Bulgaria, where, judging by the tradition of the
pedagogy of Eastern Europe countries, much atiention is paid to the formal aspect of
algebraic symbolism. '
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not reach a formal end, and one has to assume its correctness from the encircled 3 x 28 =
84 expression at the bottom.

saws  coown off 24 kg

Sukhpal FM3
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Keith W, FM3

All WEQT solutions come from Brazilian students, and there is always an initial
mistake in setting the equation. The one worth noting is Celia R’s (AH7), because her main
mistake (reversing the written form of the subtractions) is also seen on purely arithmetical
contexts20,

201 this case, x~-189 could be representing “take x from {-] 189", a literal,
non-mathematical transiation of the textual structure of the problem. From ithis and other
examples, one should be aware that the using the notion of translation to describe the
process of transforming a contextualised problem into a numerical-arithmetical equations
might be a didactic mistake, as much as it involves the false notion that “it is the same
thing, only said in a different language”. Of course, the notion that “algebra is a language”,
itself mistaken, is in the root of such misleading statement.
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Significantly, only two OKCALC solution (out of 77 scripts) were produced,
confirming our prediction that establishing a unit that could be manipulated as a part
would be a major difficulty for students not using an algebraic model. The two scripts
show only the calculations, and present no verbal explanation of the process of establishing
the unit.

WCALC solutions provide an even stronger confirmation of our prediction. 20 out
of 24 WCALC atterpts simply ignored that there was 1 part (Sam’s) to be considered. In
9 of those solutions the students gave the difference between the weights as the answer
(James O, FM2) and in 10 of them the 4 is used to divide or share the difference between
the weights (Helen C, FM2). Four students did considered Sam’s one part, but in three of
those cases they also considered that the amount to be shared into 5 was the total weight,
and not the difference (Fabio P, AH7). It seems that because they were thinking of fotal
weight the total amount put away had to be considered, and this led them to the 5
divisor.
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James O, FM2
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Fabio P,AH7
“With the difference between the two, I took how many times they took away
and divided by the difference [sic] and the result [is] how much Samuel took

away and for Jorge multiply by four,”

It is clear that the E4x statement did not easily provide parts which can be
manipulated for the weights wasted by Sam and by George, and the fact that this caused
major difficulties for those students strongly suggests that the models they were using
depended heavily on that kind of object.

The Sale 11-5 problem

One characteristic aspect of the algebraic method appears in three of the OKEQT
solutions to this problem, the introduc'tion of an auxiliary unknown, as in Mateus C’s
(AHB8) solution. The y he used to represent the amount of money left is not an essential
element of the problem, once it can be totally avoided by the immediate use of the equality.
Mateus’s solution does not deal directly with this auxiliary unknown; rather, it plays a more
descriptive role, although being clearly seen as a number (by belonging to the numerical-
arithmetical context of the expressions). Whether he saw the two expressions on the left
hand side of the two equalities as representing “calculations” or as true “complex™ algebraic
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objects, one cannot infer from the script alone, but the notation certainly provides an
environment where the latter is made easier.
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Mateus C,AHS8

On the other two solutions that employed an auxiliary unknown (again a y), the
algebraic processing included its direct manipulation (Tathy G, AHS; Silvio S, AHS8), once
the two equations were primarily seen as a s¢t of equations in two unknowns; Tathy says:
“1did a system of the Ist degree [=linear}". Although not being the simplest solution —
from the technical point-of-view — their approach shows exactly the internalism that is
characteristic of algebraic thinking: the quantity represented by y was not required in the
problem to be evaluated nor necessary to the continuation of the solution, and that those
students were aware of that can be seen on the fact that they did not substitute the x back to
determine y”. Their solutions are quite characteristic examples of thinking algebraically.
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Tathy G, AHS
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Silvio S, AH8

One WEQT solution is of interest. Sergio P (AH7) writes down an equation that
does not model the problem correctly, clearly for not understanding the problem’s
statement; he never bothered with the fact that x representing the price of a T-shirt, it would
not be possible to begin with less money, to “add” less T-shirts and to end vp with the
same amount of money as the other person that had begun with more money and “added”
more T-shirts. Then — and this makes the previous “disregard for the context” even more
striking — he wrongly manipulates the equations (between the third and fourth lines) to
produce a value for x that is positive, once he knows it represents a price and thus has to be
a positive number.

{lpoisn.= 12900 +7/n
+5n -1t = 12000 -4 500

e = 4 5%90;‘
PP SToo /& EDH O

1553

Sergio P, AH7

On the previous subsection (Seesaw 4x problems), we pointed out the
importance of having a representation of the T& E templates in order 1o foster the process
of transforming them into objects. Kelly L’s (FM3) script shows, however, that there is a
significant difference between the two types of representation, once the equation form
might not convey the order of operations— as it indeed does not in the type of problem we
are examining. Obviously, this problem can be overcome if the student has a good grasp of
the process of evaluating numerical expressions.,

'
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Kelly L, FM3

Of all OKCALC solutions to this problem, only one does not correspond to the
scheme “the extra money Sandra had corresponds to the extra Lp’s she bought, etc.”
{(David W, FM3). Esther F (FM3) instead, reasoned in a manner similar to the “if George
throws away 6 bricks and Sam does no throw away any...” described on the Seesaw 11-
5 problem subsection. That only one solution employed such reasoning with A11-5
problems, while a significant number of them appeared with E11-5 problems, suggests
that “objects” of the context of the problem become in fact objects in the model used to
solve the problems, as the “balancing process” property is immediately associated with the

Seesaw context but not with the Sale situation?1,
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David W, FM3

217his “baiancing process™ property consists in the possibility of a gradual qualitative

change in the balance state of the situation: the two sides of the seesaw being more or less

near a batanced state or the difference between the money the two friends have being
greater or smaller,
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Seven of the WCALC solutions take us in the same direction. In those solutions
(eg, Shelley S, FM2) the students treat the problem as if both friends had spent all their
money, and try to divide Sandra’s money by the number of Lp’s she bought and the same
for Maggie to see if both divisions come to the same result. This type of solution did not
appear on any Seesaw 11-5 problems, most probably because it is quite obvious that the
two friends will still be sitting on the seesaw when it is balanced, and this means that not all
the weight will have been thrown away.
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Shelley S, FM2

Of the remaining WCALC solutions, in four of them the total money is divided
by the total number of Lp’s — a strategy similar to dividing each friends’ money by the
number of Lp’s she bought, but avoiding the possibility of having different priced Lp’s for
each friend — and the rest are attempts to produce a sensible answer from the numbers
involved, some of them not very clear at all.

The Sale 4x problem

The most remarkable fact in relation to the solutions to this problem is that there is
only one OKCALC solution (Keith W, FM3) out of a total of 82 students attempting it.
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Keith’s solution is unique in that he divided by 3 not because he modelled the problem with
“1 lot, 4 lots™ and concluded that “there is 3 lots more to Sandra”, as one would expect, but
instead he saw that Sandra would have to spend the difference between them (so they
would be equal) and also some more money to allow for Maggie’s expenditure; this means
that the difference consists of three parts that will make four together with the extra part,
that Maggie also gets.

ro-e? x M Seden s 2 b Mg spend

e e e ) 2 2 et

S Lo e ZW&%@ e et &

CRb e Cadat i3 G opte di tmen) P
%@30& Lo Spaend g’é B Lo ;Jaqx{ég_j
7{&; by 762 A Sormne o enDu— T

Keith W, FM3

This finding shows that it was very difficult, if not impossible for those students to
establish the necessary unit that would allow them to use the “1part, 4 parts” strategy; the
same situation was found with Seesaw 4x problems, indicating the extent to which non-
algebraic solutions depended on the existence of parts and wholes which can be
manipulated.

The mistakes found on WCALC solutions to this problem represent mainly two
aspects:
(i) not considering at all the relationship between what each of the two friends

spent, thus focusing only on the difference between what they initially had (Joanna J,
FM2),
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(ii) ignoring the fact that Maggie also spent one “lot” and dealing only with the 4
parts of Sandra (William C, AH7).

/\‘:P,:LI tays.

William C, AH7
“Sandra spent 5100 more than Vitoria” and at the bottom ling, “Atiempt”

(meaning probably that he was not sure of his solution)

As it had happened with Sale 11-5 problems, there were a number of attempts to
divide the total money by the total number of parts (Brian H, FM3), this being again
a consequence of the possibility of the friends having spent all their money; only this time
those attempts use only divisions by 4, for the reasons explained above. In only two cases
a division of one of the friends’ money by 5 was used, in both cases taking the bigger
initial amount (Sandra’s). It might be that those students interpreted the “4 times as much”
statement as mcaning “4 parts more than™ and this produced the need to consider one extra
part.
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Brian H, FM3

One of the OKEQT scripts (Fabiana M,AH7) provides an important insight on
how the ability to solve "algebraic word problems” in general can benefit from the ability to
think algebraically, and we do not mean, of course, the possibility of developing
“automatic” solution procedures. In Fabiana’s script it is immediately clear that she thought
first of all of the existence of an unknown guantity — most probably a habit developed
through the use of equations; we have already seen that in a problem like the {4x] problems
this comes to be an essential step to reach a correct solution. Although the availability of a
special notation certainly promotes a better grasp of that notion (Fabiana: “...I thought of an
unknown (x)...”), we must keep in mind that it is the analyrical character of the algebraic
method that produces the need to make the unknown into an object.
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Fabiana M, AH7: “The problem wants to know how much V and § spent,
thas T thought of an unknown {x). The problem also gives an information: §
spent 4 x  more than V. Then I remembered the sentence that I learned in

geometry and algebra. It then became easy,”
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Four of the WEQT solutions reproduce in the wrong setting of the equations, some
of the mistakes we observed with WCALC solutions. Fernando C (AHS), for example,
equalises the total number of parts to the total money, and correctly solves the
equation and Sidnei A (AH7) attributes § parts to Sandra (the “1 and 4" mistake we
discussed 3 paragraphs above).
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Sidnei A, AH7

One has to be amazed by Luis N’s (AH7) attempt, as he writes on the first line
6500 = x
without immediately concluding that the solution to had been found. We think that he had

in fact structured the problem by atiributing one part to Vitoria’s total money and 4 parts to
Sandra’s total money, as some students did with the Sale 11-5 problem, and that the
algebraic notation was not being seen by him—at that point-—as representing true equations
to be solved. He then seems to move away from this initial interpretation and “solves”™ the
second equation, and that is when he realizes that the two values for x do not agree, and
something must be wrong.
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This shift of interpretation, so dramatically illustrated by this script, is certainly at
the core of using algebra to solve contextualised problems; the equation is set by
transforming series of calculations - analogically associated with the problem’s “story” or
context — into arithmetical expressions2?, and then those expressions are linked by
equalities —again, analogically associated with the context. It is only then that it is treated
internally, as an equation, and this shift, by marking the transition to a different Semantical

Field marks also the passage to a distinct mode of thinking.
SUMMARY OF FINDINGS AND CONCLUSION

An aspect of the non-algebraic models used by the students emerged clearly from
the analysis of this group of scripts: their synthetical nature, with the process of solution
always proceeding from the known values to the required unknown one through a series of
evaluations. The few exceptions would be those solutions to E11-5 where there is a
hypothetical manipulation of the situation that leads to the “only 6 bricks need to be
removed from George’s side and none from Sam’s side” structure.

Another conclusion to be drawn from the analysis of this group of answers is that
many students did not see numerical-arithmetical expressions and equalities as objects that
could be manipulated on themselves to produce further useful information in the process of
solving the problem. This aspect was particularly crucial in relation to the SN1 problem,
that is, as we saw, very difficult to be modelled into a geometrical or comparison of
wholes model, and thus the inability to see numerical-arithmetical expressions as
informative led to very low facility levels among the English students. That those same
students did significantly better on the contextualised problems, shows that the non-
algebraic methods used by them is based to a great extent in the perception of parts which
can be manipulated, and that the choice of arithmetical operations to be performed is almost
completely dependent on the manipulation of non-numerical objects; the numbers in the

22At this stage thosc cxpressions are in fact arithmetical, once the unknown numbers are
treated as if they were known, as we have already seen, and they are seen as calculations to
be carried out. '
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problems were rather seen as measures. The greater difficuity with [4x] problems, in
comparison with [11-5] problems also provides a clear support to this conclusion. To put it
in terms of our framework, those students that failed to solve the SNI problem
but could handle the contextualised problems were unable to operate within
the Semantical Field of numbers and arithmetical operations. Moreover, it was
difficult for many students --- probably most of those not using an algebraic approach —
to move away from the Semantical Field where the problems were originally set, eg, 1o
model a contextualised problem with a comparison of wholes model. They kept strongly
attached to the original “icons” provided with the problems’ statements and consequently
limited their perception of the problems’ structures to what is more ordinarily associated
with those contexts.

Moreover, the non-algebraic solutions, correct or not, were characterised by their
contextwise homogeneity in relation to addition and subtraction of measures. This is an
important aspect for two reasons. First, because it points out to a possible important source
of information used by those students on what can or has to be done to solve a given
problem. Second, because if this is indeed a deeply rooted informative pointer in a person’s
problem solving schemes, it would certainly be difficult to operate on a Numerical
Semantical Field, where such pointers are truly meaningless. As a consequence, it might be
that teaching “intuitive”, “contextualised” or “localised” strategies for solving algebra word
problems builds in fact a huge obstacle to be overcome when the “algebra time” arrives,
and this suggests that an early start with the algebraic approach might be of great help to
reduce the difficulties with the learning of algebra, not because of the “extra time to
practice”, but because of the earlier development of a degree of independence from such
pointers?3,

Still in relation to the influence of schooling in the development of an algebraic
mode of thinking, we found it very significant that the “default” approach for Brazilian 7th
graders was non-algebraic — although they were able to use an algebraic one — while for
the 8th graders the “default” approach was an algebraic one ; that the same was
not found in relation to the corresponding English groups, and that a considerable similarity
of ages existed, strongly suggests that the development of algebraic thinking is a process

23Qvviously, those pointers are not useless in all situations, and they may even be of great
help when one is trying 1o make sense of the relationships involved in a more complex task
or problem, What we imply here, is that both “homogencity bound” and “not-homogeneity
bound” sirategies should be made available and equally developed. Once much of everyday
activity is indeed “homogencity bound”, we suggest that schooling could avoid the
development of a too strong primacy ~— ¢ventually a pernicious one - by offering an early
alternative way of thinking.

fl
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much more akin to cultural processes than to age-related stages of intellectual
development.

The analysis of the scripts for this group of questions threw much light on different
uses of algebraic notation and on possible consequences of resorting to the notion that
setting up an equation to model a problem is a translation process. Students used letters
both in a truly algebraic way — to denote numbers — and in syncopated forms of the
verbal statement. The latter use caused two types of difficulty:

(1) as letters were used as an abbreviation of the verbal text, and there was a context
to support this usage, different quantities — different at least in principle - ended up being
represented by the same letter; also, this usage sometimes introduced new *“unknowns” (as,
for example the individual weights of each friend on the scesaw);

(i) as one “describes” a sequence of things happening, no care has to be taken to
match the order of the verbal syncopation with the conventions of numerical-arithmetical
expressions — which are not necessarily useful if one is simply trying to make the
statement more comprehensible by breaking and syncopating it, and both conventions are
very distinct in most cases. Also, the objects involved are not numbers, but objects of the
context (as we said, numbers are seen as measures and operators), and one should
reasonably expect the subject to manipulate the letters — in fact icons of those objects —
according to the properties he or she sees as relating to the objects those icons refer to;
there 1s no shift of referential, no passage to another Semantical Field.

It seems, on the other hand, that the use of standard algebraic notation—instead of
more iconic forms like boxes and question marks-—might be of use to promote a more
immediate fransformation of a contextualised problem into an algebraic one, for
example through the association between “x” and “the unknown”, one immediate
advantage being, as we saw with the [4x] problems, to make easier to overcome the
difficulty of having to establish units that do not correspond to objects of the context.

Another important aspect to emerge from the algebraic solutions offered, is that we
could distinguish levels of sophistication in the processing of the algebraic models used to
model the problems. The introduction of auxiliary unknowns, the use or not of “standard
forms” of equations in the process of solution, a more or less restricted use of negative

numbers, “one step-one line” solutions and more flexible ones, and above all, some
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solutions that treated the equation as a whole (eg, multiplying a whole equation by -1)4,
instead of the more limited perception of thinking only in terms of “chunks” (eg, breaking
the equation down into 273, -11x, =, 181, -5x, and seeing those as the blocks to be dealt
with). In all cases, however, the same basic characteristics that our theoretical
characterisation of algebraic thinking established can be identified: internalism,
arithmeticism, and analiticity.

A.4 CARPENTER-CHOCOLATE-SETS OF EQUATIONS PROBLEMS

THE PROBLEMS

¥ am thinking of two secret numbers,
T will only relt you that...

(first ne.) + (second no.) = 185
and
(first no.) - (second ne.,) = 47

Now, which are the secret numbers? .
{Explain how you solved the problem out and why you dld it #ﬁ‘ ng\y)

Sets 1-1

1 an thinking of two secret numbers.
1 wilt only tell you that...

(first no.) + (3 x secand no.} = 185
and )
{first no.} - (3 x second no) = 47

Now, which are the secrel numbers?
{Explain how you selved the problem and why you did it that way)

Sets 1-3

240f course this corresponds fermally to multiplying each side of the eguation by -1, but
we are dealing here with the perception of algebraic objects and their properties, and not
with a strict formal justification,
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At the right you have a sketch of
woedden blocks.

A long block and a shon block
measure 162 ¢m altogether.

A shont blocks measures 28 cm
tess than a long block.

What is the lenght of cach individual block?
{Explain how you selved the problem and why you did it that way}

Carp 1-1

At the right you have a skeich of
woeoden blocks.

A long block put together with
wwo of the short blocks measure 162 em
altogether.

If two short blocks are put
together, they siill measure 28 cm less
than a long block.

What is the lenght of each individual block? .
(Explain how you solved the problem and why you did it that way)

Carpl-2

At Celia’s shop you can buy boxes of chocolate bars or you can buy spare bars
as well,

A box and three spare bars cost £8.85.
A box wilh three bars missing cost £5,31

What is the price of 2 box of chocolate bars in Celia's shap? What is the price
of a single bar?

{Explain how you solved the problem and why you dit it that way)

Choc

GENERAL DESCRIPTION

This group of problems was developed with the objective of:
(i) examining students' strategies to solve "secret number” problems involving two
secret numbers and to compare those strategies with the ones used with the corresponding
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contextualised problems; each of the secret number problems in this group corresponds to
one or two contextualised problems and the relationship between the models employed on a
secret number problem and its correspondent contextualised problem(s) will be closely
examined. Both secret number problems were set in a normal form of sets of simultaneous
equations, given in a syncopated, rather than literal, notation; the use of symbols for
arithmetical operations and for equality — as opposed to the traditional verbal
formulation?® - was intended to keep the problem as close as possible to the Numerical
Semantic Field and to allow us to examine to what extent those numerical-arithmetical
statements made sense to the students.

(11) examining the effects of an increase in the structural complexity of a problem in
the strategies used;

As we will show, it was easier with this group of problems than with the previous
ones to distinguish algebraic and non-algebraic thinking even in the context of a solution
using algebraic symbolism to describe and control a non-algebraic process, once the
students were more generous with the explanations provided with their answers , and those
explanations were in general of a much better quality, this being particularly true for the
contextualised problems.

DISCUSSION OF POSSIBLE SOLUTIONS

Chocolate Box problem gg;ﬁgg;

This problem seems to inevitably involve two unknowns.
An algebraic model is
x + 3y = 8.85
x -3 y = 5.51
where x is the price of a box of chocolate bars and y is the price of a single bar. The most
likely solution to this set of equations is to add the two equations to produce

2X = 14.36
and to solve it from there.

25Eg, "I am thinking of two numbers. If 1 add the two of them the result is ...," and so on.
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Two non-algebraic models seem possible here:

(i) "The first box has 6 bars more than the second, so, if I work out the difference
between the two values [8.85 and 5.51] I will have the price of 6 bars", eic,

(ii) "If I put together the two boxes [the one with extra bars and the one with bars
missing) the three extra bars on the first box can be transferred to the second box, making
two complete boxes. So, if I add the two prices I will have the price of two boxes”, etc.

It is central that with the non-algebraic models, the choice of operations to perform
is totally subordinated to the manipulation of the image of the boxes and the bars. Also, on
those models one thinks of two boxes and three bars and not of the price of a box
and the price of a bar used in different places. Moreover, the divisions that would
follow (by 6 or by 2, respectively) would certainly be a way of evaluating the sharing of
an amount of money into the corresponding number of parts.

Another possible analogical reasoning would be,

(i) "If one box with 3 bars missing cost 5.51, then a box costs 5.51 plus 3 bars"
and proceed to “"then, 5.51 plus 3 bars with the extra 3 bars cost 8.85", etc.. This
reasoning could both produce a direct solution, through the manipulation of the whole-part
relationship, or lead to the single equatidn

(5.51 + 3y) + 3y = 8.85

This approach is substantially different from both (i) and (ii), as the meaning of the
"plus” in "5.51 plus 3 bars” can only be understood in the context of prices ("3 bars" =
"the price of three bars"”, while in (i) and (ii) "bars" stand for bars, as we saw. If one writes
1 box - 3 bars = 551
the "=" sign reads "cost” and means that the object on the left is labelled with the price
5.51. On the other hand, if one writes
1 box = 5,51 + 3 bars
the equality has to be interpreted as meaning an equality between prices, if not pure

n_w

numbers. Reading the sign as "costs" produces a somewhat puzzling phrase, very
similar to the one in the well-known riddle "a fish's weight is 10 pounds plus half a
fish...".

If the shift in the interpretation of the equal sign in the two wrirten sentences can
be made bearable by the ambiguous use of the equal sign, it corresponds in fact to a change
in the type of relationship that is being considered, and it seems to offer a substantial
obstacle to be overcome within the Semantical Field of chocolate boxes and bars in which

the problem is set, and one has to remember that it is within this Semantical Field that the
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manipulation producing "1 box = 5.51 + 3 bars” from "a box with 3 bars missing costs
5.51" would have to happen, ie, the manipulation would have to occur before the sentence
being written.

The substitution of the resulting sentence into the first line of the problem's
statement, to produce "(5.51 + 3 bars) + 3 bars = 8.85" would also be problematic, as the
substitution of the "actual” box by its price would require a strong shift in the
understanding of the original statement (with the added difficulty that the price replacing the
object is stated in terms of another object's price).

The importance of analysing possibility (iii) in some detail is that within the
Semantic Field of numbers and arithmetical operations the manipulation

X -3y = 551 => x = 5.51 + 3y
s (551 + 3y) + 3y = 8.85

presents none of the difficulties discussed above, which is a clear indication that (a) within
the Semantic Field of the chocolate boxes and bars the objects one deals with are
completely distinct from those one deals with within the Semantic Field of numbers and
arithmetical operations —- and thus the types of relationship involved and the requirements
on a notational system —— and (b} arithmetical internalism, a most central characteristic of
thinking algebraically, allows one to operate continuoﬁsly without having to consider shifts
such as those we have just discussed. We have here a very fine example of the fact thata
compact notation is possible if one is thinking algebraically, exactly because of the
homogeneity produced by the arithmetical internalism.

Solutions (i) and (ii) above, resemble very much the strategy of adding or
subtracting the two equations in a set of equations. Nevertheless there is a fundamental
difference between the two processes. In solution (i) the full boxes are thoroughly ignored,
and the conclusion that the first box has six bars more than the second box comes from a
"counting up"26 strategy, rather than from "subtracting” the second line from the first, once
it is obvious that the "taking away™ meaning of the subtraction would make no sense in this
situation because of the need to "take away what is already missing”. In solution (i), what
is done in fact is a fransfer of the three extra bars in the first box to fill up the second box;

2‘SE\,raIualed, of course, with an addition. The full box works, in fact, as a form of "zero
level."
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the extra bars in the first box are never operated with the missing bars in the second box.
Finally, in the additive solution of the set of equations -3y is numerically added to 3y
and the terms cancel each other out because the result is zero. Similarly for subtracting the
second line from the first. The point to be made here is that although solution (ii) "written”
using algebraic notation is actually indistinguishable from a true algebraic additive solution
of a set of equations modelling the problem, the two solutions are essentially distinct, each
one being the result of operating within a different Semantic Field.

Carpenter 1-1 problem (Carpl-1)

Two algebraic models seem more likely to be used to model this problem. One is
the set of equations (L. stands for the length of the longer block, S for the length of the
shorter block)

162
28

—_——
ol
H 4+
w W
+ 1l

and the other s the single equation
S +28) + 8§ =162

It is obvious that by a substitution, one will arrive from the set of equations at the
same single equation, but by separating the two models we want to emphasise that the
substitution can be made within the Semantic Field of numbers and arithmetical operations
(from the set of equations to the single equation) or within the Semantic Field of the
Wooden Blocks (the longer block being represented as a short block with an extra bit
added to it). It is clear that in the latter case the "+" sign means "conjoining” and not the
arithmetical operation.

From the results obtained on the exploratory study we expected non-algebraic
solutions to this problem to be of one of two types?? (figure CCS 1, for (i), a similar
diagram for (i1)):

@A) "if I cut 28 out of the longer block I will have 2 equal [short] blocks, so if I take
28 from the toral, I will be left with the length of two short blocks...," etc.

(ii) "/ cut the total in two, take away 14 from one half and add it to the other half,
thus making the difference 28."

2?The original problem in the Exploratory Investigation had a slightly different form from
this one, but we still expected the solutions tp follow the same pattern.
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L I B ~ A long block and a short block

| i The extra 28cm bit that the long block has

| d1 ) | The cxtra bit is removed

[ |} | i : The remaing block is cut in two halves

[ ] I l } The extra bit is put back into onc of the halves
fig. CCS 1

Again, in those non-algebraic solutions the choice of operations to be used would
be totally guided by the manipulation of the objects of the context, eg, a subtraction to
evaluate how much is left after a bit 28cm long is cut from the total.

From a script containing only equation(s) without any other explanation, it would
be virtually impossible to distinguish solution (i) above from an algebraic solution using a

single equation.
Carpenter 1-2 problem (Carpl-2

As for the Carpenter 1-1 problem, the two likely algebraic models would be a set of

equations
L + 28 =162
L =28 + 28
or a single equation
(2S + 28) + 28 = 162

Also, the same non-algebraic procedures could be used, with the additional step of
"slicing” the shorter block in Carp1-1 into the two required smaller blocks. The additional

'
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difficulty that appears in Carpl-2 is that non-algebraic solutions similar to those presented
a few paragraphs above for Carp 1-1 would have to deal with the "complex” object "two
short bars” replacing the “short bar" in Carpl-1.

ceret. Number problems

Those two problems could be represented by the sets of equations

X +y = 185

X -y = 47
and

x + 3y = 185

x - 3y = 47

presented in a more "syncopated" form.

The standard algebraic solutions would be:

(i) adding the two equations and solving the resulting equation for x, etc., and

(ii) isolating one of the variables from one of the equations and substituting in the
other, eic..

As with the SN1 problem in SSE, non-algebraic solutions to those problems
would involve modelling the problem's statement into a non-numerical Semantic Field, for
example for Setsl-1:

"Altogether they are 185, and the second number is 47 less than the first one.
‘ So, if I take 47 from the 1835 it is like having two of the second numbers...,"
elc.
which of course corresponds to a structure similar to the one depicted on figure CCS 1.
The specific model described above involves the additional difficulty of interpreting
(first secret no) - (second secret no) = 47
as meaning

(first secret no) = (second secret no) + 47

Seen within the Semantical Field of numbers and arithmetical operations, it is a
simple equivalence, but when seen as a transformation of whole-part relationships —
where the subtraction means "removal" and the addition means "conjoining” — the
equivalence is not as direct as before, because each expression involve a subtle but
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significantly different representation; the main difference would be that on the first
expression the difference is the result (or final state) of an action, while on the second
expression it is either the initial state or first operand, or the operator parameter or second
operand, depending on which model is used. As we will see in the analysis of the problems
in the Buckets group of problems, students can easily produce the transformation

xX+a=b => x=b-a

in the context of a secret number problem if g and b are known and b>a, which suggests

that this difficulty is strongly linked to the fact that the required transformation does not
produce or permit any evaluation.

GENERAL DATA ANALYSIS

The performance of the Brazilian group AH7 is much superior than that of the age-
corresponding English group, FM2, and in fact it is comparable to that of the older FM3
group. In relation to the last group of problems, we saw that FM2 performed better than
AH7 on the contextualised [11-5] problems, where the context objects were more readily
available and performed worse on [4x] problems, where the meaningfulness of an
arithmetical relationship (derived from the 1 to 4 ratio) was shown to be a crucial factor in
successfully solving those problems. Here this should not be a relevant factor, because all
the parts and relationships in the three contextualised problems are explicitly given and only
conjoining, taking away and sharing are sufficient to model these problems
non-algebraically.

Another interesting aspect of AH7 students' performance is that their approach is
clearly non-algebraic on the contextualised problems (which can be seen on both correct
and incorrect answers), but on the Sets problems the preferential approach shifts to an
algebraic one, a feature more clearly seen on the choice of strategies used in incorrect
solutions (for the contextualised problems, all the incorrect solutions are WCALC; for
Sysl1-1 the incorrect solutions are almost equally divided between WCALC and WEQT,
and for Sys1-3 most of them are WEQT). This behaviour corresponds well to a similar
behaviour observed on the SSE group problems, and it suggests that those AH7 students
had a more selective approach to the choice of strategies than the students on the AH8

group.
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That almost no OKCALC solution for the sets of equations appeared, offers
further support to our conclusion that it was extremely hard for those students to model-
back the numerical-arithmetical statements into a non-numerical Semantical Field, as we
had observed with the Secret Number problem on the Seesaw-Sale group. Although the
complexity of the problems’ statement is certainly an issue here, we think that it is not a
crucial one, once the facility level for the contextualised problems is significantly higher
than on the Sets problems on AH7 and on FM3, showing that they could to some extent
cope with the complexity offered by those problems. We think that two factors have to be
taken into consideration. First, the difficulty in extracting information from the numerical-
arithmetical relationships on what can and should be done to solve those problems, ie, the
lack of meaning of those expressions, which would indicate that those students could not
operate on & Semantical Field where those expressions were numerically meaningful by
themselves. Second, the fact that "the first number” was greater than the "second number"
or "three times the second number" was expressed by a subtraction, and our results suggest
that a non-numerical interpretation of such a subtraction is much harder than a non- -

numerical interpretation of addition in the context of comparing measures.

Two points arise the from analysis of the use of equations and sets of simultaneous
equations by students on AHS to solve the contextualised problems?8:

(i) on Choe all OKEQT solutions (47%) used sets of equations. The form in
which Choc was introduced, with two “"conditions” or "statements” clearly
distinguishable, two unknowns clearly distinguishable, and a visual presentation strongly
reserbling sets of equations (eg, the two conditions written on bellow the other) strongly
suggested the "sets of equations" approach, at the same time it discouraged the direct
modelling into one single equation; in fact 12% of those OKEQT solutions to Choc
proceeded from the set of equations by a substitution, but this procedure was never used
before the statement had been represented in algebraic notation. This shows that what was
not seen as meaningful in the Semantical Field of the chocolate boxes became visible in
the Numerical Semantical Field (as we had indicated in the analysis of possible models).

(ii) the greater complexity of the conditions in Carp1-2 made a direct
non-algebraic substitution leading to a model with a single equation much more difficult; as
a result, the separate representation of the two relationships usually preceded their
manipulation. This is absolutely clear from the fact that one has, for Carpl-1, 47% of

28we restrict our analysis here to AH8 because this was the only group to consistently use
this approach.
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solutions from a single equation and 32% of solutions from a set of simultaneous
equations, but for Carpl-2 the percentages change to only 5% of single equation solutions
and 42% of sets of simultanecous equations solutions

A possibly relevant mistake was made when producing the Brazilian version of
Carpl-2, as the original phrase "If two short blocks are put together, they still measure
28cm less than a long block” ended up as the equivalent of "The long block is 28cm
longer than two short blocks put together." In Carpl-1 both Brazilian and English
versions used the former form, Nevertheless, this difference in the statement did not seem
to produce significant effects on the results, as in Carp1-2 AH7 kept at a substantially
higher level than FM2, and AH8 kept at a higher leve! than FM3 - as it happens for both
pairs of corresponding groups in Carpl-1.

The biggest fall in the facility level from Carpl-1 to Carpl-2 is for AH8 (from
90% to 52%), and it is associated with a much greater difficulty in producing a single
equation by a direct non-algebraic substitution; this failure to directly reduce the problem
was not compensated by an increase in the proportion of non-algebraic solutions, but only
by a moderate increase in the number of solutions using a set of equations. This shows
again the lack of flexibility on the problem-solving behaviour of AH829, In AH7, the fall in
the facility level is smaller but still significant (from 69% to 44%), and it corresponds
_mainly to a smaller proportion of OKCALC solutions. In FM3 the facility levels are more
similar (64% to 52%), and in FM2 practically nil (6% in both cases, for a sample of 17
students, ie, one correct solution for each of the two problems).

STUDENTS' SOLUTIONS
The Sets1-1 problem

All but two QOKEQT solutions 1o this problem were produced by solving the set of
equations directly suggested by the problem's statement. One of those two solutions
employing a single equation, however, provides a good example of a direct non-algebraic
substitution, with the added relevance of the descriptive use of literal notation (Mairé M,
AHS).

29 Also, the proportion of WCALC solutions remains the same and that of WEQT increases
dramatically,
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Mairé M, AHS
"If the difference between them is of 47, one has 47 more than the other, thus

one is x and the other is x+47 and their sum is 185."

Normally, from the script alone it would not be possible to decide whether the
direct substitution was non-algebraic or algebraic, ie, whether it was respectively based on
modelling back the second expression into, for example, a two sticks situation, one longer
than the other, or a non-written manipulation of the second "equation”. At first sight it
seems the second is the case, as Mairé wrote down the two equations first (top left) and
solved the problem algebraically before writing down the explanation (which is to the right
of the algebraic solution). One detail of the solution, however, clearly suggests that she
was not dealing directly with the equations she had written: her second equation (first line,
after the m-dash) says that "the difference between the two numbers is 47" but it also
mplies that "x is the greater of the two". Nevertheless, on the second line she writes

X+ x + 47 = 185

and not
y+ 47 +y = 185

as it should be the case were she actually dealing with the equations written on the first line
as objects being manipulated®. Although it is truly possible that the property she evoked to
substantiate the substitution was seen by her purely as a property of numbers, we are led to
the conclusion that in fact she was using a non-algebraic model, as it took her away enough
from the equations’ context to allow a complete shift in the meaning of the symbols used.

Andrea M's (AH8) solution, on the other hand, clearly exemplifies the algebraic
substitution, done within the context of the algebraic model, ie, after she had produced the
algebraic model, and the substitution being meaningful within that Semantical Field.

30mn this case it is obvious that this procedure did not affect the correctness of the solution,
once in fact the actual algebraic solution begins al the second line, and not at the first, as it
would scem to begin.
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Andrea M, AHS

"it's the same process as in question 3 3!, but only this time the statement is on
the form of a system32.

Before separating the variables one has to leave only one variable, and this
process is donc by substitution then it is only separating one {rom the other.”

(our emphasis)

Eurico G's (AHS8) solution shows another procedure to reduce the set of equations
into a single equation with one unknown, using "...the criteria of comparison." 33

EUI‘ILO G AHS

Morcover, 1t shows that he directly attached an arithmetical meaning to the "+", "-"
and "=" signs, as it is indicated by him saying that "I solved using a system, taking what
was given in the statement and substituting the secret numbers by unknowns" (our
emphasis). On his solution one can also see the importance of internalism in thinking
algebraically, once the production of the expressions

x=185.y and x =47 + ¥y
is meaningful only in the context of the method of solution.

31we velieve that she mistakenly referred 1o question 3 (SN1), having in fact intended to
refer to question 2 (Carpl-2), which she solved using a set of equations,
321{1 Portuguese, system of equations stands for set of equations.

Compar:san being the “official® name for that straiegy according to Brazilian textbooks.
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Eurico's was the only OKEQT solution to use the comparison strategy. All the
others used either addition of equations (eg, Erika M, AHB8) or substitution (Andrea M,
AHBS, script already shown) strategies, with twice as many substitution solutions as
addition of equation ones. Formally, the addition of equations strategy involves a more
sophisticate algebraic perception than the substitution strategy, as one would have to
perceive the equations as an objects that can be operated with. Nevertheless, one can
actually perform the addition of the two equations term by term, with the correctness of the
procedure being guaranteed by a trust in its algorithmic side rather than a deeper

understanding of the procedure's roots.

Erika M, AHS

The solutions by Bruno N (AHS8) and Alberto SA (AHS) also throw light into how
students might identify the adequacy of using an algebraic strategy — in this case solving a
set of equations. In Bruno's case it is the structural aspect that provides the hint (identifying
equations, operations involved and variables), and in Alberto's case it is the direct
recognition of equations in the problem's statement (as in Eurico's case, analysed above)
together with the visual aspect ("...2 equations one bellow the other.").
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Bruno N, AH8
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Alberto SA, AHS

From the six WEQ'T solutions, three are of greater interest.

Ricardo G's (AH8) makes an almost careless mistake by "forgetting” to include the
second y when he substitutes into the first equation the expression for x obtained from the
second equation. Apart from that his solution is neat and correct, and had he checked his

answer, he would have probably spotted the mistake and corrected it.
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Ricardo G, AHS8
In Nicola D's (FM3) solution, the derivation of the three expressions
A=185-B, B=185-A and B = A + 47
is technically correct, but she never gets any further. In a sense it seems that she was trying
to put the expressions in a form in which she could see how to proceed, being unaware that
from any of the expressions involving two unknowns alone she could not get "the"

answer. It did not occur to her a substitution or a comparison, although she had already
produced the necessary steps to use any of the two strategies.
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Nicola D, FM3

Finally, we have Adriana C's (AH7) solution, in which she fails to perceive that

letting the same letter to stand for both secret numbers is the main cause of her attempt not
working.
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Adriana C, AH7

As she was writing the first two lines she might well have been aware that the two
secret numbers could be different, and was making use of a heavily context-dependent
notation (thinking of "a number” and "a[nother] number”), but then she shifts her attention
to the written expression and looses control of the process. It is also interesting to notice
how she tried to make sense of the second equation '

X ~-x =47
by producing

«2x = 47
instead of accepting the obviously "puzziing”

0= 47
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Although so evidently distinct in terms of the level of knowledge and technical
competence, in those last three scripts one can see the unknown numbers (or parts) being
part of the solution process, ie, being assumed as objects in the model, as having the same
properties of the known ones34 (Analiticity). Also present in all three is a willingness to
manipulate numerical-arithmetical expressions in order to produce the answer, this
manipulation developing within the Semantical Field of Numerical-arithmetical
expressions3’.

Only three OKCALC solutions were produced, two of them of interest to us.

First we have Laura W's (FM3) solution. Her solution to this problem is exactly the
same she gave to Carpl-1 and Carpl.2 (scripts also shown bellow), and we are led to
believe that she actually modelled back the set of equations into wooden blocks as in the
Carp context.
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Laura W, FM3 — Seisl-1
1B~ 2= Dlam founaca 162 \")c);? Hom
D~y =& mddcd hedt 6325 (1w cmto
GHFIG = a5 X Hon ook | (& &) Ao

C‘:(hc, /’W(‘Lu\
IOMadd bloce 671am

i
;
g block asamr J

Laura W, FM3 — Carpl-1

34At least at a manipulative level.

Actually, Ricardo's and Nicola's solution could be entirely justified in terms of whole-part
and sharing ~— which nevertheless does not seem to be the case, specially in Ricardo's case.
In Adriana's solution, however, we have the expression

-2x = 47
which indicates some degree of — if not conscious — numerical internalism.
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Laura W, FM3 — Carpl-2

Second, we have Joe V's (FM3) solution36,

b this
lobee den:j t,l:l}S'S Jo €5~

115-5  Now, which are the secret numbers? .
FH8-§  (Explain how you sotved the problem out and why you did it that way)
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Joe V, FM3

A few points indicate that his is an non-algebraic solution and not a non-
symbolised algebraic solution: he begins by subtracting 47 from 185; if the intent of this
step was to work out the resulting ri ght—hand side that would result from subtracting the
second equation from the first, one has to assume that he did it in order to eliminate the first
secret number from the resulting expression. But if this was his intention, why not simply
add the two equations, a much simpler procedure by all means? On the other hand, we may
see this subtraction as an evaluation of the result of taking the gxcess 47 from the total, so
to produce two equal parts, and that he perceived the 47 as an excess of the first number
over the second is clear from the fact that near the end of the solution (right before checking
his answers up) he says "...I add ...[the] (Znd no) to 47 to find the 1st no.".

36As we said before, the fact that he made a numerical mistake was of no imporiance to us,
once the process would lead to a correct answer,
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The third solution offers only the calculations and no explanation as to why those
steps were chosen.

What emerges clearly from the WCALC solutions is that the lack of some kind of
written representation seriously hindered the solution process, as those students were
trying produce a chain of calculations that made sense and produced an answer. One script
is particularly illustrative (Jan C, FM3), who seems to be doing well, only to make a
mistake on the Jast calculation, most probably by judging 69 to be the first and not the
second secret number.
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Ian C, FM3
The Sets 1-3 problem

All the OKEQT solutions to this problem used a set of simultaneous equations.

Three of them were solved by a substitution method, eg, Daniela V (AHS8), in
which script we find explicated a very important characteristic of the algebraic method, the
need to distinguish different unknowns and parameters from the outset, to assure that the
correctness of the derived relationships is kept.
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Daniela V (AHS)

"I one number is y the other will be x, because they are distinet...” (beginning

of text)
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Ten of the sets of simultaneous equations were solved by the addition method, and
three of those solutions present us with characteristic aspects of algebraic thinking.

In Ricardo M's (AH7) solution, the addition of the two equations is justified as he
writes down "-3m+3m" and only then simplifies it. This procedure shows the arithmetical
internalism characteristic of thinking algebraically as it gives the reason for adding the two
equations and a justification for the addition producing an equation in only one unknown
that is completely based on a property of numbers37.
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Ricardo M, AH7

Walter R's (AH8) solution exhibits the method driven internalism characteristic of
thinking algebraically. For no "good" reason he first multiplies the first equation by minus
one and only the performs the addition of equations38. Nevertheless, the objective of such
step is to prepare the set of equations for a subsequent transformation, ie, it is meaningful
within the Semantical Field of numbers and arithmetical operations.
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Walter R, AHS8

37we think that the particular detail of Ricardo writing "2n - 3m + 3m" instead of "2n+ 3m
- 3m" (the "natural” order, following the order of the equations) shows that he was thinking
of the addition of opposites properly and not of “take away and put back" or
"complementing” strategies, the former corresponding to a way of avoiding to write "+3m +
SBm)“, a mere symbolic convenience.

8The quotes mean that he could have obviously applicd the addition sirategy without this
exira step.
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Finally, Giuliano G (AH8) sees the generality of the merthod of addition in enabling
him to find either of the unknowns from the same set of simultaneous equations by
applying the same strategy, and it shows that:

(i) it is the addition of opposites that is the centre of his attention (an arithmetical
property), and,

(ii) although dealing with a numerically specific instance, the generality of the
method is clearly expressed even if no "generalised numbers" ("letters”) are used for
parameters.

(RE s

K57=42 7 axa3ys -4h Y X43w <3S ol
xedm o 6y=y (6469085  Yeos
-~ Ty £ .
e 2w \-{1l6,233
Giuliano G, AHS

One of the WEQT solutions (Juliana B, AH7) shows one of the possible effects of

not distinguishing the two unknowns.
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Juliana B, AH7

The result for the first secret number is incidentally correct, given the "friendliness”
of the set of simultaneous equations, but she fails to perceive that the second secret number
had not yet been determined (also because she does not check the answer against the
problem's statement)3?, It is also interesting that she does not use a "+" sign between the
two bracketed expressions on the left-hand side of the equation on the first line, but
operates correctly on it, which suggests that the conjoining meaning of addition was used

3% fact it is not possible 1o firmly determine whether she did not distinguish the two
unknowns at the level of the problem's statement or at a symbolic level, . the latier being
carried through the remaining steps of her solution process 1o end with her giving the answer
"The number is 116" (bottom line at the left).

]
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in "putting the two equations together", rather than a purely numerical-arithmetical one.
Nevertheless, she was aware that both "conditions" (equations) had to be taken into
account, and did not simply substituted x for both numbers in one or both equations and
proceeded from that to produce the answer, as did Bartira (AH7).
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Bartira, AH7

Bartira added the extra condition

i

X

1st number
x +1

2nd number

i

reducing the problem to one in one unknown only and correctly manipulated the two
resulting equations?%; we want to emphasise that she correctly handled the distribution of 3
over x+1 even if the latter was not indicated by brackets, and this shows that she was
being guided by properties of numbers and also that she was keeping control of the
structure of the expressions she was manipulating, even if the notation did not 'suggcst s0.
Bartira's mistake was at the level of understanding the relationships implied by the
problem's statement (a modelling mistake), and not at the level of thinking algebraically.

Another WEQT solution (Rubens K, AH7) presents the case of manipulation of
algebraic expressions being deformed by considerations external to the Semantical Field of
- numbers and arithmetical operations.

40This is not entirely true, as she makes a mistake on the very last calculation, putting (-
50)/2 = 25. However, as she did not make any other mistakes in calculations with directed
numbers, it might well be that this was not a true error, being instead a deliberate subyersion
of the usual rules in order to make the result to fit her expectations (for example, that the
numbers were positive, an expectlation which could have come, for example, from the faci
that the answer resulting from the first cquation was positive).

- .
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Rubens K, AH7

Rubens begins by deciding to deal with the first equation separately, and correctly
identifies two unknowns (nl and n2). Being unable to proceed from there, he wipes out
the distinction in order to reduce the equation to one in one unknown, correctly solves the
resulting equation, but fails to go any further, apparently because he could not see how to
"revert" the process and go back to the two distinet unknowns.

On the WCALC group, the most common error was to take the two conditions
given in the problem’s statement separately. As one cannot "solve" any of the two
equations separately?!, usually this error was followed by the additional error of trying to
produce an "answer" by dividing the independent term by 3, the only other "visible"
number in the expressions (Nicola B, FM3),
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Nicola B, FM3

Gurdeep S (FM3), however, goes farther, producing a series of calculations that
actually result in the correct second secret number.

410ne could obviously treat each of them as an indeterminate équation in two variables and
find some solutions or express a dependence condition explicitly, but it is clear that this
procedure was far too sophisticate for those students,
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Gurdeep S, FM3

His procedure could be seen as corresponding to the algebraic procedure

{x+3y:: 185 (+3)

x - 3y = 47 (+3)
185
3vy= 3 (D
417
5-v= g (1)
185 47
2y = gy D - dDn
185 47
3 "3
y.?.,:'-"""-"“—--——2 :23

Although possible, this interpretation is highly unlikely to be correct because:

(i) to keep control of the solution process is not simple even with the help of
algebraic notation; without it, it seems to be at least very hard; _ .

(1) if Gurdeep had in mind the subtraction of equations strategy, he would have
probably applied it directly, without going through the step of dividing both equations by
3. -

We offer the following alternative interpretation. Gurdeep begins by dealing with
the two relationships separately, and “ignoring” the first secret number he produces the
second secret number from each equation??, Realizing that he had produced two distinct
values, he then tries to make sense of and to coordinate the two pieces of information. We
believe that he tried to do so by "averaging" the two values he had obtained.

42This initial part of our interpretation is supported by the fact that on the first line of his
script he wrote "185/3 = 61.6666667 = secret number”
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Only one OKCALC solution was produced (David W, FM3), and it is clearly
non-algebraic, most probably supported by the imagery of a number line (see fig. CCS 2).
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David W,FM3

The text in David's script has to be in a sense "decoded”, because it does not

literally correspond to his solution,

e He first says that he "...found the middle number in between 185 and 47. "To
do this I found the difference between 185 and 47. This gave me the first
number." It is clear that it is not the difference between 185 and 47 that
produced the middle number, which he correctly gives as 116. Rather, he
found the difference between 185 and 47 (138), divided it by two (69) and
added the result to 47 (all three calculations at the left of the script). In relation
to the diagram in fig CCS 2, this corresponds to finding the distance between
the two extremes A and B, halving it and adding this to A to produce the point
M. .

*  He the says that "...To get the second, 1 found the difference between the first
number and either 185 and 47 [our emphasis]...”, a step that clearly
corresponds to finding the distance between A and M or between M and B.

= Finally, he divides the result by 3 to find the second number, as the distance

1

between the first number and either 185 or 47 corresponds to three times the

second number.
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Initial Scheme

1 of AB
A M B
47 185
" -g\\“%wﬂ_,j
Evaluate MB
A M B
47 185

- D Y\ 4 ~—
Work out each of the three parts

fig. CCS 2

David's solution is synthetical. It always proceeds by using the known values to
calculate new values until he finally reaches the required answer. It is reasonable to
suppose — although no explicit indication exists in the script — that the structuring of the
problem itself never involved assuming the unknown values as known in order to guide the
process of solution. Given David's description of his solution process, we believe he
began by reasoning that the first number was a sort of "centre" from which the same
amount was taken from and added to (or, in the context of the geometrical imagery, two
points taken, to the right and left of the "centre”, and at equal distances —- see the "Initial
Scheme” on fig CCS 2); from this model it is possible to envisage the necessary steps to

]
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produce the answer without any analytic reasoning being involved43. A second point of
interest is that he did not realise that he had already worked out the difference between the -
middle and extreme points, and recalculates it as 185-116; the relevance of this point is
that it suggests that at each step a new mode] was produced and then manipulated according
to what was seen as relevant in that model, and that previous evaluations and
manipulations were not necessarily seen as “belonging to" the most recent model. Finally,
it is worth to remark that he produce a literal representation of the problem's statement
(upper left corner of script), that although incorrect — it uses x for both unknowns —
might have been important in suggesting the geometrical model by compacting the
problem's statement.

The Carp 1-1 problem

WCALC solutions were mostly of two types.

Five students misread the problem's statement and assumed that the length of the
shorter block was 28cm, consequently getting the length of the longer block by simply
subtracting 28cm from the total 162cm. It is almost certain that this type of mistake arose
from a poor reading of the problem's statement, but it has to be pointed out that it was
favoured by the actual typing of the questions, which in both Brazilian and English
versions — especially the latter — might suggest the mistaken interpretation to a reader
more inclined to "quickly inferring."

Twelve students, however, used a more complete — although incorrect —
approach (eg, Fabiola AH7). Those students used a "+2, +28, -28" strategy that many
students had used in the exploratory study. This mistaken procedure is certainly due to a
failure to perceive that taking 28cm from one of the halves antomatically makes the
difference between the two measures to be 28cm, but while satisfying the "difference of
lengths" requirement, it alters the total length. Those students perceived this unwanted
effect and corrected it by adding to the other half the 28cm that had been taken away to
produce the shorter block. This step, in its turn, if adjusts the values to satisfy the "total
length" requirement, alters the difference between the blocks, thus producing incorrect
answers.

43The only relevant property used is that the ruiddle point is at equal distances from the
extremes.
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Fabiola, AH7

"81cm would be if both blocks were equal, but the small is 28cm smaller than
the big one (81-28) and what you get is the small. Then it is only to do (81+28)
and that's the big [block].”

At the root of this kind of mistake is a characteristic of many of the non-algebraic
solutions presented, and that we have already examined on the last paragraph of the last
sub-section, namely the fact that at each step of the solution process a new model is
produced - representing or not a correct derivation from the previous models — and it is
the most recent model that is manipulated according to what is perceived as relevant and
required in relation to this model; each step is locally meaningful. The result is a step-by-
step solution in the sense that the goals and the means to achieve them might be constantly
changing, sometimes resulting in a loss of overall control of the solution process or in a
deterioration of the original conditions and requirements through overall inadequate
rransformations of the intervening models. |

The OKEQT solutions offer a variety of approaches.

The most common strategy was to take away 28cm from the total, so to produce
two short blocks, and divide the result of the subtraction by two to obtain the length of the
short block; then add 28cm to the length of the short block to obtain the long one (eg,
Bruno N, AHS).
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Bruno N, AHS
"I removed the difference and divided by 2, resulting in a total of two short
blocks [our emphasis]. Then T appended the difference [,] resulting in the big

block. I found out how 1o solve it by logical reasoning.”

Bruno's solution is a very clear and well explained instance of the use of this
strategy, including a diagram that is enbugh to guide the whole solution process. Some
aspects of his solution are of extreme interest to us. The presence of the diagram assures us
that the word “tirei”, that in Portuguese could also mean "subtracted”, is used in the sense
of "removed”. Moreover, he says that the division resulted in "...a total of two short
blocks...", clearly corresponding to a "cut" followed by a division to evaluate the lengths
of the two resulting halves. Finally, the word "acrescentar”, that in Portuguese might also
be interpreted as "adding", has to be interpreted here as meaning "appending”, in agreement
with the clear-cut indications of the rest of the script. The objects being manipulated in
Bruno's solution are objects of the context, and the choice of operations is subordinated to
the need to evaluare measures; moreover, his solution is totally synthetical, working from
known objects to produce other objects that are shown to satisfy the required conditions.
As in David W's solution to Sets1-3, Bruno's solutions never deals directly with as yet
unknown parts.

Hannah G's (FM3) solution is very similar to Bruno's, but instead of "cutting” the
difference to make two short bars, she adds the difference to the total, pretending there
were two long blocks, showing that hypothetical manipulation of the context of the
problem can become a key element in non-algebraic solutions. In Hannah's script one can
also see the extent to which the choice of operations is subordinated to the manipulation of
the non-numerical model ("1 did this to find out how much they measured if they
were the same length.")
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Two other OKCALC solutions are worth examining, both using a "+2, +14, -14"
strategy.

We think that Joe V (FM3) decided that he had to add and subtract 14, and not 28,
based on his perception — probably due to the expression on the second line — that the
28cm "in excess” on the long block had also been divided in two, an interpretation that is
supported by him writing

28

814—*2”“

before writing
81 + 14

which indicates that the former expression carried with it something important enough to be
made explicit.
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Joe V, FM3

On Ricardo G's (AH8) script, on the other hand, there is no clue to how he decided
to add and subtract 14, but it is his peculiar way of using algebra that we want to examine.
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He clearly begins with the assumption of the blocks being of the same size, and
writes down and solves an equation that reflects that; just by looking at the equation one
cannot decide whether he was dealing with a numerical relationship or simply using the
Jiteral notation to describe an non-algebraic process. In any case one has to notice that he
explicitly deals with the unknown number-measure, ie, this part of the solution process has
an analytic character. At the following step, where he adds and subtracts 14, it becomes
clear that he saw the division by two as producing two halves instead of producing one
value, as each of the two lines begin with x (one of the halves) and represent in fact the
transformation of each half (x) into the required blocks. His is a non-algebraic solution
"dressed" in algebraic notation4,

Tatiane R's (AH7) solution is another instance of a non-algebraic solution
"dressed” in algebraic notation, but it seems much closer to a true algebraic solution than
Ricardo’s, as the model used to set the equation takes aboard —— as unknowns -—the
lengths to be determined, as opposed to Ricarde's solution (see note 20), and she produces
an equation that directly and simply represents the problem's statement.

44Allhough it is obvious that one cannot be totally sure that the equation was not scen as a
numerical expression, and that subsequently a shift in the meaning of x occurred, we think
that in the face of the model he used to set the equation — with X representing none of the
unknown lengths — together with the use of x in the remaining two lines, we must conclude
for the "non-algebraic" interpretation,
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Tatiane R (AHT)
“The two blocks together = 162¢m
But if T remove the bit of block that is in excess in relation to the small block,

then it is the same as two small blocks plus the extra bit."

Her explanation however, fully reveals that throughout the process of solving the
equation she was being guided by -— or at least constantly checking for meaning against —
the manipulation of a model that took the objects of the context as objects, an non-algebraic
model. The decisive detail in the text is when she says that "it is the same as two small
blocks plus the extra bit," showing that the solution process was in fact guided by a
composition-decomposition of parts process. '

In the OKEQT group of solutions, a number of points arise.
Alessandra O (AH8) produces a substitution in the context of the set of equations,

while Andrea M (AH8) produces a direct non-algebraic substitution, 10 solve the problem
from a single equation.
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Andrea M (AHS)

"x will be the number of the small block, as I don't know the complete
measures but known the number of “"comparison” of one to the other. I do the
same process as if I had the complete measures: add. The sum is done normally
{.] I add separately the numbers and the x's. Then I separate x to one side and the

nombers 10 the other, If there siill is some number with x, I move it to the
other side [,] with the inverse operation.” (our cmphasis)

Andrea's solution, morcover, provides a clear statement of:

(i) the analiticity of her reasoning, by saying “I do the same process as if 1 had the
complete measures: add.";

(ii) the arithmeticity of her reasoning, by saying that "x will be the number of the
small block..." and treating numerically the setting of the equation.

Marilia M's (AH8) and Rogério C's (AHS8) solutions exhibit an important feature of
thinking algebraically, the use of normal forms of numerical-arithmetical expressions.
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Rogério C, AH8
In Marilia's case, the normal form is produced at the algebraic level, by
manipulating the second equation |
- 28 =y
to produce
X -y =28
while in Rogério's case the normal form is directly produced by interpreting - and
representing - the fact that one of the blocks is 28cm longer as meaning that the difference
of their lengths is 28cm?>,

The Carp 1-2 problem

An undesirable and unexpected effect appeared in relation to this problem, with nine
students solving Carpl-2 as if it were Carpl-1, ie, only one short block had been
mentioned in the problem's statement. We are led to believe that those students had already
been presented with Carpl-1 on the first session, and when they saw Carpl-2 they did
not bother to read the statement, as both the drawing and the first sentence are the same in
both problems’ statements, a flaw in the design of the tests4. Also, five students solved
the problem assuming that 28cm was the length of two short blocks; this mistake had
already been identified in the solutions to Carpl-1, and here again it might have been
urged by the unfortunate choice of line break for the text.

Other WCALC solutions reveal some difficulties caused by the increase in
complexity in relation to Carp1-1.

Ricardo B (AH7) applies a "generalised” version of the "+2, -28, +28" that was
examined in relation to Carpl-1.

45Thls type mterpretdtlon was in fact very rare in all the problems in all groups.
50ur original intention was to cause the two problems to be seen as much as possible as
very similar,
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Ricardo B (AHT)

"There are three wooden blocks, so I divided the total length and put another

28cm. then I subtracted as you can see above.”

As aresult of the increased complexity, Ricardo fails to perceive that the 28cm he
adds to one of the parts produced by the cur-division makes the long block 28cm longer
than each of the other ones, but at this stage the two short blocks put together are in fact
26¢cm Jonger than the long block??. A very odd shift now takes place, as to work out the
length of the short blocks he subtracts the now known length of the long block from the
total length, and divides the result by two to obtain the length of each short block; it should
be immediately clear, as he obtains 80cm for two short blocks that something went wrong,
as the difference is only Zcm. We think that this fact was not enough to trigger a revision of
the previous working exactly because at that point the model he was working with included
only the "total" and the "two short blocks” conditions, but not the "difference” condition; as
it had happened with the solutions to Carpl-1 mentioned earlier in this paragraph, each
step resulted in a new model that was then manipulated anew, with the product of previous
manipulations not always being taken into consideration?®,

Helen R (FM3) produces a very good diagrammatic representation of the problem
(except that the diagram on the right is not correct because it includes the "extra” 28cm in
the total as a separate bit), a representation that would almost certainly lead to a correct
solution in Carpl-1, but fails to draw further information from it and fails to manipulate it
into a more informative diagram, which suggests that the need to deal with the two short
blocks as one single object functioned as an obstacle that was not overcome by her.

47 is legitimate at this point to assume that the two remaining blocks are the two short
blocks, as Ricardo’s rationale for dividing by 3 is that there are three blocks.

48 A5 in the total disregard for the two 54cm biis that ought to correspond to the two short
blocks — if not immediately, afier some possible adjusting steps. Instead he shifts to the
modet "I know the total length of a long plus two short blocks, and I know the length of the
long one, so..."
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Helen R, FM3

The OKCALC solutions to this problem underline and clarify several relevant
aspects of non-algebraic solutions.

Bruno N's (AH8) solution®? shows the way in which a diagram is used to provide
a simplified representation of the problem's statement, mixing a whole-parr figure to
represent the first condition, with an added verbal remark ("28cm more") to represent the
second condition. It is clear that this diagram guides the solution process, as the labels used
in it for the long and short blocks are used throughout, and the first line in the sequence of
equalities indicates - by having the numerical calculation on the left-hand side and the part
that its result measures on the right-hand side— that the numerical calculations are used to
evaluate the measures of parts according to the manipulation of the whole-part model.
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Elizabeth W (FM3) provided us with what is probably the clearest example of an
non-algebraic solution among all scripts we examined.

First, because she makes it explicit that the figures she draws at the top are used to
guide the solution process. Second, because she always describe the manipulative steps

49The text 1o the right does not add anything that is not already evident in the rest of the
script, and for this reason is not translated,
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that justify the choice of operations to be performed on the measures to evaluate other
parts, eg, "...J could pretend 1 had chopped 28cm from the long one...", and "I can
now stick the 28cm back into the long block...". Moreover, in her solution there is a
transformation of the problem when she reduces it to one where a long block measures the
same as two short blocks. This strategy is different from taking the difference away to be
left with four short blocks, as it actually establishes a new variable and a new relationship,
the shortened long block becoming "the" long block. Her solution is throughout well
controlled and synthetical, and above all it shows that verbal language is totally adequate to
describe the hypothetical assumptions and the transformations that support the choice of
operations, while standard written arithmetical statements take care of describing the

evaluations. 0:3(’5
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Elizabeth W, FM3

In Matthew K's (FM3) script also we find a solution process that is typically
non-algebraic, with the 28cm taken as a separate bit that can be appended to the
combination of one long and two short blocks, the arithmetical operations being performed
to evaluate lengths. It is also distinctively syntherical.
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Matthew K, FM3

Finally, we examine Joe V's (FM3) solution , which uses literal notation ("...a little
formula...,” as he calls it) but is guided by the manipulation os a whole-part model.
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On the second line he writes
n+n+x= 162

his "formula”, but it is not a numerical one, as one gathers from the subsequent
manipulation of the model it is intended to represent. Instead, the "+" sign means the
conjoining “and", and the "=" sign denotes "measures” — acting as a value label, as we
saw on page.... This interpretation becomes more clear when Joe "...take[s] the 28cm from
162cm so that the answer is n* ' - in which he obviously meant 4n; the subtraction 162-
28 (an evaluation) is different in nature from the action that produces the "4n" (a
decomposition) corresponding to its result30, Although apparently it is an analytic model,
in fact it is not, becaunse the parts of unknown measure are not there to be directly
manipulated, but to provide the whole-part structure and allow him to visualise a sequence
of decompositions, compositions and correspondent evaluations that will lead to the
answer.

30We think it is telling that Joe states the decomposition — with its ontcome — as a
separate and prior step from the actual calculation.
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As with the OKEQT solutions to Carpl-1, we had for Carp1-2 both cases of a
model with a single equation in one variable being produced through a direct non-algebraic
substitution (eg, Laura G, AH7) and of a model with a set of simultaneous equations being
initially produced and from there a substitution that reduces the set of equations to a single
equation in one variable (Mairé M, AH851),
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One last OKEQT deserves examination. Tatiane R (AH7) first solves the problem
with equations (left), with a peculiar use of indexed x's, possibly meaning that she saw the
two short blocks in the second line as distinct>2 from those in the first line; the distinction is
finally blurred on the fourth line, and the solution correctly completed?. On the verbal
explanation, however, she shows an understanding of the back-interpretation of the

51The text at the right of the script is a restatement of the problem’s statement, and thus
was not translated.
52Physicall),r distinct; some ofther blocks.

Although there is a mistake in the subtraction, the solution is considered correct,
following our criteria of prioritising the overall correctness of the procedure over the actual
calculations,
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algebraic procedure in terms of the problem's context that is mistaken ("...when the three
[blocks] are equal one has only to divide by the sum that made the three equal”). Had she
followed the image of three equal blocks, she would have made a mistake, and this
strongly highlights that by focusing the solution process on the method and by keeping it
internal, algebraic thinking provides a powerful way of keeping correct control of it.
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Tatiane R, AH7

Two WEQT solutions present two distinct — but both critical — aspects of using
algebraic models to solve problems.

Mariana O (AHB) starts by setting a correct single equation in one variable -— a
direct substitution — and correctly solves it for x to determine the length of the short block.
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Mariana O, AHS

"I put the name of x on the small, and if the larger is 14cm more, 1t is x+14"

Having already correctly recognised and used the relationship between the lengths
of the long and short blocks, she then shifts to another model and this produces the error.
'The model she shifts to seems 1o be related to the "+2, +14, -14, +2" approach34, which

54 An extension of the approach of dividing the total in two parts and then adding 14em to
one of them and subiracting 14cm from the other one o produce the required lengths.
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nevertheless is not correctly interpreted by her, producing the misunderstanding that the
longer block is 14 cm longer than each of the short ones35, Mariana correctly solved
Carpl-1 using an equation, and we are led to think that the increase in complexity was at
least partially responsible for the lack of appropriate control. The crucial point, however, is
that the shift to a distinct - although potentially correct — model produced an error, and
this indicates the extent to which an algebraic approach depend on keeping the solution
within the boundaries of the initially set equations, as the arithmetical internalism
characteristic of algebraic thinking involves a shift away from the Semantical Field of the
Wooden Blocks, and any new relationship introduced during the process of solution would
have to be double checked, first within that Semantical Field — to assure that it correctly
models the problem’s statement - but also against the initial algebraic model, to guarantee,
for example, that the unknowns used are in correct correspondence. Marina's lack of
perception that the resulting length of the long block is not 28cm greater than the length of
the short ones — let alone 28cm longer than two of them put together — is remarkable.
The second WEQT script we want to examine is Marcel S's (AHS).
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Marcel S, AH8

This script shows how deeply an algebraic solution can be guided by the
meaningfulness of transformation strategies rather than by any other considerations, ie,
how strong a factor the method can become, Marcel's solution has several errors. The first
is the failure to distinguish the two unknowns notationally, a mistake that we have already
examined. Also, the sccond equation of the bracketed set (top-left) does not model the
problem's statement correctly, not even allowing for the interpretation — derived from the
first equation — that x alone represents the long bar and x in "2x" represents a short bar.
Finally, when he "substitutes” in the sccond equation the "value” of the left-hand side x, he

55She might have reasoned that if the long block is 28cm longer than two short blocks, it is
l4cm longer than one short block.
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"omits” the 28 that is immediately to the left of the equal sign on the second equation.
Nevertheless, he does produce a substitution, one that might seem absurd as he had not
one, but two equations in one variable that he could easily solve — as he does with the
equation resulting from the faulty substitution — and this indicates that although he did not
distinguish the two unknowns notationally, he apparently did it semantically. Moreover, it
might be that the 28 was "missed" because in the Semantical Field within which Marcel
was operating, it was meaningful only when added to the "2x".

The Choc problem

In previous passages, we have already analysed some of the difficulties caused by
the use of context-dependent or loose notation. Two attempted solutions to this problem
suffer from such shortcomings, but the outcome — although incorrect in both cases ~— is
quite different. Both Tathy G (AH8) and Daniela V (AHS8) use the notation "x + 3" for a
box and three spare bars, and "x - 3" for a box with three bars missing.
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Ao + poL 3 w,,/%a M= _,5,&,3_3%

Daniela V, AHS

"if one box x + 3 (plus three spare bars) = (cost) 966, a bar costs the price of all

of them + by 3, that is, x = Q%Qx 322,

Because we add the three bars that were missing
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Tathy treats the two resulting equations separately, and abandons the attempt when
she gets different values for x, both equations being correctly solved. On Tathy's solution
there is a shift into a Numerical Semantical Field immediately after the equations being
produced, and this results in the variable "chocolate bar" being simply overlooked and not
considered at all after that.

Daniela, on the other hand, stays within the Semantical Field of the Chocolate
Boxes even after writing — and carefully explaining — the expression “x + 3", She then
interprets the situation as meaning that the total price corresponds to the 3 spare bars —
disregarding the full box — and divides 966 by 3 to obtain the price of a single bar>9,
However, when she uses the same kind of notation to express the second combination, the
strategy does not apply any longer, because it makes no sense to think of sharing the total
by what is not. It is only then that she tries to make a new sense of the expression and
shifts into a numerical-arithmetical interpretation and correctly solves the equation — as
meaningless as it can be in regard to the problem's statement. When she tries to justify the
shifted procedure, she says "Because we add the three bars that were missing”; there is a
clear disturbance in the meaning of the 714.

Nine students produced a value for the price of a chocolate bar by dividing the
difference between the two combinations of box and bars by 3, WCALC solutions. The
root of this mistake is probably similar to what caused the shift in Daniela's solution: those
students knew that the difference in price corresponded to a difference in the number of
bars, but considered only the spare bars in the first combination, the bars that "actually”
existed. Claire B's (FM3) script is quite clear about this, as she labels the 3 as "...(the
number of bars in question)..." Also in Claire's script, we find a forceful example of the
subordination of the use of the arithmetical operations to the manipulation of a non-
numerical model, as she takes away "..£5.31 from £8.85 to get £3.54..." and from there
produces the price of a bar, but "...To check this {that the price of £1.18 for a bar is
correct] I took £3.54 away from £8.85 to get £5.31." (our emphasis)

56We believe that Danicla’s flow of thought passed through the fecling that the 3
corresponded to the only thing being actually "counted”, "the number of chocolate bars" —
forget the "sparc” — as the number of bars in a box is unknown and is not mentioned as an
element of the problem’s statement or question.

r
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Claire B, FM3

All but one of the OKCAL solutioné were of one of two types: (i) putting together
the two combinations, with the three spare bars in the first combination "compensating” for
the missing ones in the second combination (eg, Clare F, FM3%7), or (ii) proceeding from
the fact the the extra price corresponds to 6 extra bars (eg, Cldudia F, AH7).
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Clare F, EM3 (svvpt  Aestoved )

5T Clare F's solution we have the "compensation” stralegy explained in terms of a possible

physical action, but most students in the OKCALC category did nol mention thm kind of
rationale explicitly.
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Claudia F, AH7
"box=x

This box with +3 scparate bars, in the end will have 6 bars more than the other
one, because in the other 3 bars are missing and the box with +6 is full and has
+3 bars.

Price of 6 bars = difference between boxes.”

Cldudia uses literal notation, but the intention is clearly descriptive only, as those
written expressions are never directly manipulated; instead, the objects manipulated are
objects of the context, and the model based on which the problem is solved is made up of
those objects of the context and and relationships involving them, and perceived properties
of both the objects and relationships.

The one OKCALC solution that does not conform to types (i) and (ii) above is
David W's (FM3).
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David W, FM3

His solution to Choc is absolutely similar to his solution to Sets1-3, and as we
argued before on page 254, it seems to be based on a model involving points in a number
line (as in figure CCS 2). David is one of the very few students that produced solutions that
are clearly non-algebraic but using a model that is not built based on the objects of the
context. Moreover, the model he employed here and at Sets1-3 is perfectly general for
this class of problems.
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One solution stands halfway between algebraic and non-algebraic, Walter R (AHS)
says that he "...solved with a system 58 to find out the box [sic] and subtracted the 966 by
714 and divided by 6 and found out how much is the bar."

NI S O thocsloli Anponsote o° Ud
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Walter R, AHS Algs Sane o alyn|

When he says that used a set of equations, one has an indication of how he
classified what he was dealing with, but at the same time the notation is incomplete and one
wonders how he would deal with a problem like "a box and three spare bars,..., a box with
two bars missing.” The fact that he starts afresh to determine the price of a bar, suggests
that the he did not perceived the "system" as composed by expressions linking the price of
a box and the price of the bars, and we are thus led to believe that he was very much
influenced by the form of the literal expressions in his choice of method of attack to this
first part of the problem.

Only one script actually adds to what we have said so far about OKEQT solutions.
Giuliano G (AH8) uses absolutely the same method of solution — unique in this group of
students — he uses with Sets1-3, namely, solving the set of equations twice, once for
each unknown, and both by the addition method. Moreover, his maturity and confidence
with algebraic solutions shows in his use of symbolism: if y stands for "(the price of) a
bar" xy stands naturally for "(the price of) a box of y's", or x of y. He is never troubled
by this potentially ambiguous notation. Finally, we think it is very significant that from a
mature algebraic thinker comes the only script in the whole of this group of problems
where the answers are checked against both conditions.

5885ce note 32, p242.
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SUMMARY OF FINDINGS AND CONCLUSIONS

The analysis of the responses to the problems in this group threw light on many
characteristic aspects of both algebraic and non-algebraic thinking, but also on the ways in
which the two modes interact, and on the modelling processes that develop on the border
between algebraic and other modes.

The issue around which all the others can be organised, is that of meaning. Seen in
its broader sense — and we think this is the correct approach here — meaning is related to
the stipulation of which elements are to belong to a model and in which way, ie, how they
will relate to other objects of the model and how those objects can be manipulated, or what
properties they have; meaning is related to the constitution of objects from elements, and
inevitably linked to the perception — by the solver — of what could and should be done in
order to solve a problem.

In relation to this group of problems, the clearest instance of different ways of
producing meaning from the elements of a problem comes from the Choc problem. While
a substitution strategy involves a strong shift in meagning when performed within the
Semantical Field of the Boxes, it does not when performed within a Semantical Field of
numbers and arithmetical operations, as we have already seen. Another very important
indication of the effect of the types of objects that are constituted -— and, of course, of the
effect of what the solver sees as meaningful in a problem's statement - is in the fact that
many students simply could not make sense of the Sets problems; taken as arithmetical
relationships, they did not provide them with information on how to solve the problem
because fo them arithmetical relationships cannot be constituted into objects and
manipulated, being rather a form of descriptive, static statement. The other possibility for
solving Sets problems, modelling them back into another context, ie, interpreting the
numbers as measures and the arithmetical operations as whole-part operations (conjoining
and separating, for example) was thoronghly ignored by the students (only 12% of FM3
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did that in Sets1-1; no-one else did it in Sets1-1, and no student did it in Sets1-3). The
fact that many students were able to handle — non-algebraically — problems with the
same whole-part structure, shows that the difficulty was in interpreting the arithmetical
staternents in whole-part terms.

Another key element in the direct manipulation of those relationships in Sets, the
willingness to incorporate unknown numbers or parts into the model and deal with them as
if they were known (ie, a willingness to operate analytically), was present in none of the
non-algebraic solutions. From the examination of the scripts to the contextualised
questions, we learned that the lack of analiticity is a consequence of, rather than a cause
to the use of non-algebraic models. Non-algebraic models involved a separation between
the objects to be manipulated and the measures involved in the evaluation steps; the
ransformation of a relationship involving two parts of unknown measure can only be
meaningful if it enables an immediate or almost immediate evaluation. For example, if one
knows that "a long block put together with two short blocks measure 162cm altogether”,
one can derive that "if from the total one removes the long block one is left with two short
blocks". Although in terms of whole-parr manipulation this is an easy step, it does not
entail the immediate evaluation of any as yet unknown part and is thus, in itself,
meaningless in the context of an synrhetic solutions,

Only one student used a non-algebraic, "decontextualised” model8?. David W's
model is clearly geometrical. In many instances we could positively identify non-algebraic
models through their use of objects of the context as objects (eg, "cut the extra bit", "move
the extra bars to the other box" or "3 bars, the ones that count"), but even on those non-
algebraic solutions where this positive identification was not possible — leaving open the
possibility of them using a more general whole-part scheme, based on a line-diagram, for
example —- we almost always found that the models used were constrained by limitations
very similar to those in a model based on objects of the context (for example, to take 28cm
corresponding to cutting the extra bit, but not add 28cm in a hypothetical move), and this
characterises a non-algebraic model.

Diagrams were used only with Carpl-1 and Carpl-2 problems, supporting our
conclusion that non-algebraic solutions were almost always context-based, as in those
contexts bar and line diagrams belong naturally as schematic representations of block
combinations. Also, there were more diagrams with Carpl-2 than with Carpl-1, and we
think it was so because the greater complexity of the former made it more difficult to be

39There would also be another difficulty, in this specific case, that the 162cm is a measure
to the combination of blocks, and only meaningful in this respect,
That means, out of the original context of the problem
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handled without the aid of a representation on paper. The lack of written representation
resulted many times in the solver loosing track of the unknowns or of the solution
process®l,

In most of the solutions using equations we could reasonably establish that the
reference to the problems’ context was abandoned, in particular through the generation of
expressions where the minus sign could not be given an immediate non-algebraic
interpretation, but also through a process of manipulation of expressions that could only be
meaningful in the context of the algebraic method of solution (not enabling, as we said
before, an immediate evaluation). The internalism of those solutions imply their
arithmeticity, and as it is reasonable to expect that most of those students would not justify
their manipulation of equations on the basis of properties of numbers, this arithmeticity
means instead a focus of attention on the arithmetical operations as a source of information
on what could and should be done to solve the equations, thus the problems.

Much more frequently than not, algebraic solutions were method-driven, with the
overall control and meaning of the process being related to the process of producing
transformations leading to the special form

x = f(data)
while non-algebraic solutions were frequently constituted of a sequence of models, each
one produced through the evaluation of a part or partial whole and manipulated locally,
which in many cases led the students to disregard initial conditions or to introduce new
ones. This is not, however, a necessary characteristic of non-algebraic models.

The relevant aspect we could detect in relation to the effect of teaching, is the greater
flexibility of AH7 when compared to AH8. The younger AH7 group used mainly non-
algebraic approaches where the problems were amenable to them, but were inclined to
switch to an algebraic approach whenever they were not, even when they did not
have the necessary technique to deal with the resulting algebraic model
readily available. This effect had already been detected in the previous two sections, but
the greater complexity of the questions in this group made it even more clear.

611 vosing track of the variables means not being able to correctly associate the result of a
series of evaluations with the parts or partial wholes it corresponds to; loosing track of the
process of solution means disregarding one or more of the initial conditions of the problem.
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4.5 THE BUCKETS-SECRET NUMBER PROBLEMS

THE PROBLEMS

From & tank filled with 745 litres of water, 17 buckeis of water were taken.

Now there are only 626 Tires of water in the tank.

hold?

i bucket .
How many litres does a e and why you did it that way)

{Explain how you solved the pr

Buckets

Question 1

1'am thinking of 8 "secrer” number,
I will only telf you that ...

182 - {12 x secrel no.) = 97

The question is: Which is my secret number?
{Eaplain how you solved the problem and why you did it that way)

Sec+

I am thinking of a secret number.
I will only tell you thal

120 - (13 x secret no.) =315

‘Fhe question is: Which is my secret number?
(Explain how you solved the problem and why you did it that way)

Sec-

GENERAL DESCRIPTION

The problems in this group were designed mainly in order to check the extent to
which a whole-part model —— the most natural model to use with the Buckets problem —
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would be used to model back Sec+ and Sec-. We expected Buckets to be easier than
both Sec+ and Sec-, and Sec+ to be easier than Sec-,

The complexity of the problems was kept low in order that issues relating to the
choice of model could be highlighted.

DISCUSSION OF POSSIBLE SOLUTIONS

All three problems could be modelled algebraically either directly, with an equation

like
745 - 17x = 626 (D

or first producing a reformation of the problem's situation to produce an equation like
17X + 626 = 745 (Im

corresponding in Buckets to the fact that the water taken, together with the water that was
left, corresponded to the initial amount of water, and then solving it algebraically.
Neveriheless, setting the equation could serve only to make the problem’s statement more
compact, with the solution proceeding from there non-algebraically.

Non-algebraic solutions for Buckets and Sec+ would probably involve the same
model, relying on the perception of a whole-part relationship, namely the one leading to
equation (II), and solved on the basis that if one removes from the whele the part that
remained, what is left is the part that was taken, and this resulting part would be shared
between the 17 buckets or into 13 parts. In relation to Buckets, the procedure is very
much analogical and requires no further modelling or interpretation; in relation to Sec+,
there has to be an interpretation of the subtraction as "removal” and from there the whole-
part relationship is established.

This model, however, is obviously inadequate to Sec-, and because it is
impossible to avoid the acceptance of negative numbers at some point, this problem is
naturally closer to the Semantical Field of numbers and arithmetical operations. This
inadequacy accounts, in fact, for much of the importance of this group of problems in
relation to the whole set of test problems; the low level of complexity allows us to better
examine the effect of the "push” towards the Semantical Field of numbers and arithmetical
operations. The two subtraction items involving negative numbers (25-37 and 20-(-10))
were designed to provide supporting information to the analysis of the responses to these
problems and those in the group analysed on section 4.6, one of which also involves a
negative number as the answer.,
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GENERAL DATA ANALYSIS

As we expected, a clear hierarchy emerged, with Buckets being the easiest
problem, then Sec+, and Sec- being the most difficult. The differences in the facility
levels were significant in all cases but between Buckets and Sec+ in AH8 and in FM2, a
fact that we will closer examine ahead. AH8 was the only group where the level of facility
for Sec- was high (71%, against 14%, 15% and 17% for AH7, FM2 and FM3
respectively), and it is very significant that all those correct answers in AH8 were produced
by solving an equation. As with all the previous problems we have analysed, the level of
use of equations by FM2 and FM3 was very low.

The flexibility in the choice of approach previously shown by AH7 is also present
here in a very clear manner. Although the facility level falls from Buckets to Sec+, the
huge fall in the number of OKCALC solutions is compensated by an increase in the
number of OKEQT solutions; moreover, on Sec+ two-thirds of the incorrect answers are
WCALC, but on Sec- this situation is more than reversed, with three-fourths of the
incorrect answers being WEQT, and this is a good indication of their willingness to switch
to an algebraic model when the non-algebraic models are not enabling them to solve the
problem. AHS also show some flexibility here, with almost two-thirds of their correct
answers to Buckets being OKCALC solutions. On the Sec problems however, all their
correct and incorrect solutions use an equation; the use of an algebraic approach is certainly
responsible for the high level of facility for Sec- in AHS, indicating that in the case of this
problem it represents indeed a more powerful tool for solving it than non-algebraic
approaches. This will be examined more closely on the students' solutions.

Because Buckets and Sec+ have an identical whole-part structure, the difference
in the facility levels strongly suggests that many students could not interpret the arithmetical
subtraction as a removal to produce a situation similar to the one in Buckets. Given that
many students correctly used in those and previous problems a subtraction to evaluate the
result of a removal, a subordination of the use of the arithmetical operation to the perception
of the a whole-part model is established in this case, as opposed to some form of more or
less symmetrical correspondence between subtraction and removal,
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STUDENTS' SOLUTIONS

The Buckets problem

By far, the typical correct solution to this problem was an OKCALC solution. In
most of those (38 out of 59 OKCALC instances) some explanation was given, making
reference to the fact that to know how much had been taken on the buckets one had to
subtract what was left from the initial amount of water (eg,Fabiana M, AH7; Sidnei A,
AH?7; Alexander P, FM2; Rebecca H, FM3).
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Fabiana M, AH7
"I thought... if there were 745 and now there are 626, it means that 119 1, of

water were taken on 17 buckets.”
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Sidnei A, AH7

"1 did this sum to know how many litres were taken from the tank. [at the left of
seript]

I did this sum because if 119 litres were taken altogether [,] the fogical thing
(is] that one woukd have to divide to know how many liires go into cach

bucket."
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Sidnei's reference to "the logical thing to do" seems to be his way of saying that no
explanation is necessary as to why it is so. In all four scripts the subtraction part of the
procedure is taken as self-evident; in no case an explanation is provided as to why this
subtraction correctly provides the amount taken, not in verbal terms nor using some kind of
diagram. Also, in none of the solutions the intermediate step of saying or showing that the
amount taken plus the amount left corresponded to the initial total amount was taken.
Altogether, this is an exceptionally strong indication that the direct procedure was perceived
as an intrinsic property of the situation and the explanation would only have to indicate
which numbers corresponded to which "roles.” Similarly, no explanation was ever
provided as to why the division by 17 produced the amount taken on each bucket.

Only six solutions used equations, five correctly solved and one incorrectly solved.
Flavia C (AH7)%2 first makes a mistake by writing 75 instead of 745 on the initial equation;
then, instead of the correct — in that context — 75-626 subtraction, she does 626-75. This
“corrective” manipulation probably corresponded to the perceived need to produce a
positive number as the answer or to a pre-equation perception of the calculations required to
solve the problem. The latter seems to be a better interpretation, as hers is the only of the
six solutions using the equation

62The text on Flavia's script simply explains that "17x..mecans...17 times x."
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a-bx=c¢

where the first step of the solution leads to
, bx=d

and not to

-bx=d _
strongly suggesting that her solution uses algebraic notation but is guided by a whole-part
model as in the OKCALC solutions examined above, and the 626-75 subtraction simply
corresponds to "initial total minus remaining water"”, where the smaller of the two numbers
obviously had to play the role of "remaining water".

15-(13.x)= 626, Voc@ Yorends Ux, quer divtr gue Vorom bive-

!?x - 55 (Jg_} I3 erbxéeéya de v .- (N3 Je dys l-'fva-)
X @% ' Qe o\ peva 62 61k,
1
x=32,4.

Rt(éb@. 3.4 ity Bua cada bulls

Flavia C, AH7

In only one of those six solutions using equations, Andrea T's (AHS), the initial
equation does not correspond literally to the problem's statement, corresponding instead to
the statement "the water in the buckets together with the water that remained is the water
one had originally" - obviously derived from the problem's statement.
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Andrea T, AHS
“explanation- I added the 17 buckets multiplied by x, because I don't know the
amount of water in cach bucket, with the water that was left, and {I} gave as the

result the water that was there before.”
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Andrea's procedure displays a characteristic similar to the direct non-algebraic
substitution procedure we examined in relation to the problems in the Choc-Carp group of
problems, by manipulating a non-algebraic model first, and then producing an equation
from there. All other four OKEQT solutions proceeded without going through the
equation

17x + 626 = 745
preferring instead to operate directly with the negative coefficient of x (eg, Ana RW,

AHB8). In Andrea's script we also find a clear example of the analiticity and arithmeticity
of algebraic solutions.

EEIIEY PRV 62}@ q_i,g_,:)(’—_}) fézg
-3 =026 - 4T v "
N -nx = -9 148 - |!"‘i_'f__j<§?‘f\
. /x = X

Cabere F L Aor o coolo- balole.

Ana RW, AHS8
The seven WCALC solutions do not provide any interesting insight or instance.

The Sect+ problem

Characteristic of the OKEQT solutions is that here - as before with the OKEQT
solutions for Buckets -— in all cases but one the equation initially set corresponds directly
to the problem's statement. Also — and more important, given that the problem's statement
directly suggest a specific equation — in all instances, the solvers accepted and dealt with a
negative coefficient for x, rather than first producing the transformation into

181 = 12x + 97

In two OKEQT scripts are displayed peculiar aspects of thinking algebraically.
First, in Fabio C's (AH7) solution, one sees the constitution of a new object (12x),
meaning more than a syncopated notation for the multiplication — even if slightly more; in
his solution Fabio operates arithmetically with the unknown.
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Fabio C, AR7
"First I solved the operation in brackets (12 . x = 12x) then I solved the rest of

the problem as if it were an ordinary equation.”

Christiane T's (AHS8) script is a fine example of the method-driven aspect of
algebraic solutions, as she multiplies the second equation by -1 even before performing the
calculation on the right-hand side of the equation, in a sense treating the known numbers as
unknown ones, but actually showing the extent to which the distinction between known
and unknown numbers has faded. '
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Christiane T, AH8

In three scripts algebraic notation is used but the solution process is not algebraic.
Célia R (AH7) solves the problem by first restructuring into the equivalent of “the amount
that was taken corresponds to the difference between the initial and final amounts™; from
there she writes and solves an equation, and one cannot positively decide whether there
was a shift into the Numerical Semantical Field or whether she was using literal notation to
describe a non-algebraic solution. In any case, the main step that allows her to evaluate x
- the manipulation that led to the first equation — was most likely based on the perception
of the whole-part relationship. In the other script the situation is much more clear, as
Marcelle D (AH7) writes down the équation directly derived from the problem's statement,
but the rest of the solution is void of further use of literal notation, and the solution process
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corresponds directly to one guided by the whole-part relationship. Finally, Gil § (AH7)
uses literal notation only to express the general form of the procedure he used, possibly as
a way of justifying it; we think that on the light of what we have said so far, there should
be little doubt that his solution was guided by a whole-part relationship.
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Gil §, AH7

In most of the OKCALC solutions the explanation provided indicates that the
whole-part relationship was on the basis of the solution process (Simon J, FM3; Sarah G,
FM3; Marcelo A, AH7; Leandro F, AH7; Jennifer J, FM3).

Tre secrl nunfer 15 7
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Simon J, FM3
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gl -97 = B%

2 % o = B¢

12 x(7)= 8%

o -{12x7) =0
Sarah G, FM3;
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Marcelo A, AH7

“I subtracted 97 from 181 o know which was the other factor.,."
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IL.eandro F, AH7

"I solved [it like this] because if the result=97 then 181-97 will give the result of

the multiplication..."

8- Q728 buts e Sun To Ble. secref
N e~

B 1227 v that Maek et

Jennifer J, FM3

It is central that the form in which it is expressed is of no importance, as the
decomposition process is always clearly visible. The use of a letter (the "A" in Simon's
script), a verbal specialised term ("factor”, in Marcelo’s), or a more or less standard, non-
literal notation (the question mark in Sarah's) do not make the solution essentially distinct
from those using verbal, relatively neutral references ("the multiplication” in Leandro's or
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“the sum” in Jennifer's). As with the OKCALC solutions to Buckets, there was never
any explanation as to why the subtraction would produce the remaining the value of the
remaining part.

1n some of the incorrect solutions the source of the errors can be traced back to the
use of loose and incorrectly generalised, verbally formulated rules like "undo it using the
inverse operation” or the rules for the manipulation of algebraic expressions (Rebecca H,
FM3; Sukhpal S, FM3; Ana Licia E, AH7). Nevertheless, in this kind of behaviour one
can identify the focus of attention being at the arithmetical operations —- even if it does not
result in correct procedures —- and this evidences at least a willingness to limit one's
attention to the arithmetical context, a necessary aspect if one is to operate within the
Semantical Field of numbers and arithmetical operations.

« . .y
JELie L e

Plooh Vhe GF gant 43l by A1 becacne (G vhe

CPPatat of = gt Lot by uvher di -+ 23 IZ'

Do L 18 the (.2‘3)%1"-“‘5)‘@* ot x :

Rebecca H, FM3

€18 (2 x X =47
=47 2 12-18=X
Syt 418]= 297

. = X= 26¢)
= sectee Noo = 2471

Sukhpal §, FM3
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_Ana Licia E, AH7
"I changed the sign of the parenthesis..." [as if it were an addition or subfraction

instead of a multiplication]

One script in this group is of interest to us, because it employs a unique approach
(Cecilia B, AH7).
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Cecilia B, AH7 (solution to Sec+)

“To do this test 1 had to imagine it with smaller numbers”
on the left, parallel to the margin: 36 - (2 - secret no.) = 20

on the right-hand comer: "to see if it's correct”

From the simpler example, Cecilia works out the string a calculations that leads to
the solution of the equation, and simply applies it to the original numbers. On one¢ hand,
her solution seems to rely completely on insights emerging from the simpler example; the
solution is thoroughly synthetical. On the other hand, she easily accepts that the
"algorithm" can be applied to a problem from which she did not feel able to derive the
solving steps, ie, that the range of numbers to which it applies is not dependent on
properties of the small numbers on the "exemplary" case and the relevant factor is the
numerical-arithmetical structure. Even more striking, Cecilia applies exactly the same
method to solve Sec- (script also shown bellow), and the "simpler problem" she uses with
Sec- is not, as one might have éxpecled, in direct correspondence with its statement,
where the "result" (ie, the number on the left-hand side) is greater then the "starting
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number” (ie, the number from which a multiple of the secret number is subtracted). The
"simpler problem” she invents is

20 - (4 x secret no.) = 12

from which, knowing that the secret number is 2, she correctly derives the solving
algorithm as '

ecret n “_2____
secret no. = 4

The crucial step, thus, is that she puts in correspondence the numbers in this model
with the numbers in the problem's statement, regardiess of the fact that in Sec- the "result”
is greater than the “starting number,” and correctly applies the algorithm, paying attention
to the order of the terms in the subtraction and of the sign of the final answer. It is clear that
the process is carried out completely within the Semantical Field of numbers and
arithmetical operations, as control of the operations depends totally on the arithmetical
articulation of the paradigmatic expression. Hers, however, is not an algebraic solution,
as it is synthetical by the very nature of the solving technique.

i%uwldhﬂﬂanuq.u& &mAKthX Uﬂi.@&lﬁﬁ VL@%Q&MWQ :
PO - (Ux on? a9 ) 12 R qus o 2 & k. Enf A
Ul UL (o po }A@ﬁk{‘ Lo LSO vl W n O C&i@CbLQ\“ w

GMTEO: i

130 - 315 = - 135
195 2 1y 2~ (5

LN R’*“Iinta POt niouwls L - b, : 5

Cecilia B, AH7 (solution to Sec-)

"To find out, I invented this other problem:

20- (4 x sceret no) =12, T know that the secret number is 2. So I saw how one
can, with those numbers, to get 10 2.}

Then,.."

Finally, we have Melissa R (FM3). The first step of her solution — evaluating
"what is between the brackets” — seems clearly based on the whole-part relationship. The
second step, however, instead of representing an evaluation of the sharing is explicitly a
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manipulation of the newly established relationship, namely 12-x=:84, based on syntactical
transformation. We would not go so far as to say that she was fully aware that the
"reversing of the multiplication sign” stands in fact for a property of the operation, but the
source of information on what to do next was certainly the numerical-arithmetical
expression, in particular the multiplication operation. We have thus a mixed solution. When
she solves Sec- (script also shown bellow, together with the script for Sec+), she first
concludes for the answer béing 15 and only then adjusts the answer to -15 in order for it to
fit the problem's statement (15 is encircled at the top-left corner of the script, and the minus
sign at the end of the string of calculations on the first line was certainly inserted
afterwards, looking "squeezed" between the equal sign and the number); the adjustment is
made by assuming that the 195 had to be negative (and she puts a minus sign to the left of
195 on the first line, which is later obliterated). Her solution does not proceed through
successive transformation of equations, but much of it is clearly performed within the
Semantical Field of numbers and arithmetical operations; again, Melissa shows flexibility in
mixing different models, but she is successful only due to the extreme care taken in secing
that the overall result was adequate in relation to the original condition set on the problem's
statement.

Te cecet no. s M Tace AM P 91 s o, j
AT i
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Melissa R, FM3 (solution to Sec+)
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Melissa R, FM3 (solution to Sec-)

‘
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The Sec- problem

The main difficulty in dealing with this problem using non-algebraic models is that
the whole-part model that worked so smoothly with Buckets and Sec+ simply does not
make sense in this case, as Daniel S (FM2) puts it.

yv tan't b&; 13 x Se crel po. becceuse i}

w:” {’r?c«( D,o Ene S~
; i
@t wd be w  migs Numbe e

Daniel S, FM2

The observation at the bottom line might indeed serve as the seed of a corrective
approach that can be used to make a whole-part useful. By assuming the secret number to
be negative, one immediately has that the subtraction notationally indicated is not "in fact" a
subtraction, but an addition, and the problem is reduced to

120 + (13 x secret no) = 315 {equation I)

which can be easily solved with the help of a whole-part model. In Mi P's (FM3) solution
the minus sign is added to the answer only after the "amount" is found; Sophie W (FM3)
on the other hand, worked out the value of 13xsecret no to be <195 and proceeded from
there by dividing it by 13, as also did Jennifer J (FM3, script not shown). In both Mi P's
and Sophie's solutions the main step relies on a property of numbers, but the use of the
whole-part relationship is also crucial. The perception that the secret number is negative
expresses not only the numerical treatment of the problem, but also some degree of
analiticity in the approach, as the secret number — yet unknown — is taken as having a
property, which means it has been made into an object.
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Sophie W, FM3

Attempts to use a whole-part mode! lacking the perception that the secret number is
negative, led to two types of error. In eight cases the solver simply assumed that 315
corresponds to the whole and that 120 and 13-secret no correspond to the parts (eg,
Marcelo A, AHT), as if the problem said

315 - (13 x secret no) =120
and the problem is solved as Sec+ would be using a whole-part model.
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Marcelo A, AH7
"First I subtracted 120 from 315 to know which was the number in the brackets
and then divided this number by thirteen.”

He encircles 15 and writes "secret number”

We can safely conclude that this inversion is caused by the "meaninglessness” of
the original statement in terms of wholes and parts, as expressed by Daniel S two
paragraphs above, representing an attempt to make sense of the situation, as all eight
student who produced this type of solution had solved Sec+ using a whole-part model.
Another inversion produced by students in the problem's statement was to take the
subtraction

120 - (13 x secret no)
as actually indicating
(13 x secret no) - 120
which also restores the meaning in terms of wholes and parts (David B, FM3).

MG + 11O 2450

[, H5 2\ = MWBwHBM

\ Add. VO ~ BXD IS \mesdome e, Mg Srowey
N “,«\m:’)‘é’f’\:& avanm M%T\rm N Buraded ‘5(

David B, FM3

Five students produced this type of solution; only two of them had correctly solved
Sec+, both OKCALC solutions, one was a T&E solution, one was NATT, and in one
case a similar error was made there as here. If one thinks in terms of a hierarchy, it seems
that incorrectly reversing the terms of the subtraction (second type of error) represents a
cruder error than adjusting the roles of the numbers involved (first type of error), as the
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students doing the latter error seemed to be operating much closer to a consistent model for
dealing with problems of this kind®3.

To one of the students, Lufs N (AH7), the drive to make sense of the problem's
statement in the context of whole and parts was so strong that he simply "corrects” the
statement, to produce equation I we showed a few paragraphs above, without realizing that
the number coming from the new equation would have to be adjusted to fit the problem's
condition®4,

- f R,(,‘ v o i.anrgNTE‘Sc-.'S
TR .
'3"' * |20 :_516 % [VERSES B LAV ,,..r‘\ ?rnt;’r{p\t‘rf E tle?.‘)(,u b"f
3 23190190 3

r ;m(,.-/.'»'i'rp (>

’3»/:%\ 195 Izé% AF aake
¥ = |‘55:lj a4
x I th

Loy

Luis N, AH?
"I solved the brackets
used a property and found oul the unknown (x)

I already knew it thow 10 do it]"

Marcelle D (AH7) uses algebraic notation; at first sight it might seem as if she
simply misapplied rules for the manipulation of equations®. On the light of the analysis of
the previous few paragraphs, however, we are led to conclude that in fact she made sense
of the equation by producing the same reversion of the subtraction as David B above. Her
solution to Sec+ also begins with an equation, but proceeds with calculations only.

63Disrcgarding the order of the terms in a simple subtraction is a mistake that has been
identified by several rescarchers, and it might have contributed to making the mistaken
reversing more acceptable to those students.

641t is impossible 1o decide from the script only whether he solved the resulting equation by
thinking algebraically or whether he stayed with the whole-part model, bul because of the
seemingly cause for the "correction”, we would — more as 4 matter of exercising
interpretation than as a matter of this decision being relevant — prefer the latter
interpretation.

65Nameiy, “change sides, change sign”, with the

€

sign seen as "belonging” to 120,
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Marcelle D, AH7

As it happened on Sec+, almost all OKEQT solutions reached at some point the

equations

-13x = 315 - 120 or -13x = 195 ;

in most of them the solver multiplied both sides by -1 (Fldvia C, AHS8) to obtain

13x = -195

and in a few cases the solver carried on with -x, dividing first by 13 and only at the end

reversing the signs on both sides. Fabio C (AH7) directly reaches an equation of the form

13x=..., but this step is justified in terms of the process of solving the equation, and not

in terms of a relationship derived from the initially given whole-part relationship. It is

significant that this form of control of the process results in a correct derivation, while

Marcelle — even with the support of literal notation — and other students whose solutions

were guided by a whole-part model failed. By shifting the meaning of the process into one

closely related to the method of manipulation of the expressions, away from the context of

evaluation of measure of parts, Fibio's approach overcomes the difficulties involved in

making sense of this problem within a whole-part semantic.

T fZo - (B3%) = 2345
120 - 43 = 345
-3y = #5120
13y = M5B
4«19/ 13 ¢ =A%
x=-495
A

i

4
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Fabie C, AH7
"I solved as if it were an cquation.
First T solved the brackets, then I moved the secret number (x) to one side and

the nuinbers to the other, then it's only to solve the equation.”

In several WEQT solutions, the solver arrives at either
-13x = 195 or 13x = -195
only to produce 15 (instead of -15) as the answer. Difficulties with the division involving
a negative number could certainly be responsible for the incorrect result, but one script
suggests another possible source for it (Ana C, AH8). Although keeping the algebraic
correctness at a syntactical level — in this case, keeping the coefficient of x negative — it is
possible that the model underlying the reasoning was in fact based on the perception of a
whole-part relationship; in Ana's script this is indicated by the fact that she refers to "the

number 'x"" — probably a reference to the amount taken — and also to it being ™'13x",
but she never refers to the negative coefficient or to the fact that her reasoning would have
to be complemented by something like "but in fact each x is negative”. The perception that
the result had to be a negative number did not come from the awareness that "I subtracted
something and it got bigger" nor from the recognition that the coefficient was in fact -13
and not 13 — and thus the divisor would have to be -13 were she "reversing” the
multiplication. Both aspects being essentially numerical-arithmetical, this lack of
understanding supports the case that the model underlying her solution process was indeed
a non-algebraic one. Ana's solution to Sec+ (script bellow) is similar in this respect to the
solution to Sec-, as she correctly keeps the minus sign but does not deal directly with it
(when most OKEQT solutions did), and the process produces a correct result only by
vittue of the "friendliness” of the probleny; the written explanation certainly corresponds to

a solution guided by a whole-part model®,

660ne might argue that she justifies the division as reversing the multiplication and this
brings the solution closer to an algebraic one, buit we think the crucial and characleristic step
here is deriving 12x=84 from the initial statement, as in algebraic terms this would involve
directly manipulating the unknown.

’
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Ana C, AH8 (solution to Sec-)
"If you subtract 315 from 120 [sic] you'll have the number "x". Bul as there
"13x", you have 10 divide by 13."
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Ana C, AHS8 (solution 1o Sec+)

"You have a number (181) that taken from the unknown number [our emphasis}
gives a result (97). If you take the amount of the result (97) from the 1st
amount, you'll have the difference between the two. As 12 is multiplying, you

move it 1o the other side dividing."

Fabiana M's (AH7) script is very interesting for several reasons. At first she tries
setting and solving an equation, and it seems that she tries to "distribute” the minus sign
over 13x (top-left corner); as the resulting express.ion is not meaningful to her, ie, she
cannot get information on how to proceed with the solution from it, she shifts to another
model, which is clearly based on a perceived whole-part relationship. From the verbal
explanation we learn that she had already transformed the problem — inadequately — into
one equivalent to the additive equation 1 some paragraphs above ("...a number that
multiplied by 13, +[1]120=315..."). We think it is extremely significant that the model
takes control of the solution process to the extent that the simple arithmetic rules are
subordinated to its semantic; it is enough to observe that on the three lines of expressions

]
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(top, center-right), the subtraction notationally indicated is never meant to be one, as it is
revealed on the third line. Fabiana had solved the item 25-37 correctly, which indicates
that the disregard for the rules of arithmetic were not a mistake but part of operating in

another Semantic Field.
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Fabiana M, AH7

"In all mathematical expressions we first solve the brackets, then T would have
to find out a number that multiplied by 13, +120=315. That's why I took the
120, that would be added later, and divided the rest by 13 to find out the other

number.”

Leandro F's (AH7) solution offers us a rare instance of algebraic thinking without
manipulation of literal notation or algebraic expressions. The expression he derives for the
secret mmmber is correct, and it takes into account that if the secret number is to have a
positive coefficient — or, as he would possibly put it, "for the secret number to be
‘positive’ — the correct subtraction is 120-315, and he also uses the brackets correctly.
We think Leandro's solution is substantially different from those in which an awareness
that the secret number was negative existed but the solution process proceeded within the
context of the additive equation, and this difference is clearly shown by the fact that from
the beginning the terms involved in the calculations he indicates are correctly signed; there
is no transformation of the problem with an adjustment a posteriori to fit the original
condition of the problem. His verbal explanation is very confuse, and almost nothing more
can be gathered from it; we produced a very literal, almost word-by-word translation in
order to convey this state of things. For all we said above, the fact that his final answer is
15 and not the correct -15 only supports our interpretation, once it indicates that he was
not aware beforehand that the answer had to be negative, and produced the necessary
transformations on the basis of his perception of the numerical structure of the problem's
statement,
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Leandro F, AH7
"I found out it was minus because of the - sign in front of the brackets and also
it was possible to know that the result-120 and when I did the calculation and

divided by thirteen to sce if it would be possible.”

Finally we examine Vicky H's (FM3) script. There are two points of interest. First
she rewrites the problem's statement using letters not only for the unknown, but also for
known numbers. According to our traditional usage, she is not distinguishing the known
numbers substituted from the unknown one, as the choice of letters seems to indicate a
mere sequential A-B-C from left to right. On the other hand, she distinguishes A and C as
having a different role than 13, which she left as a definite number. We think that she was
trying to put the problem's statement in a general form from which she could derive a
pattern and a solution procedure. The generalised form she attained appears to bring three
things into consideration:

(i) a possible whole-part model, which does not fit back into the problem's
statement, as C<A (and she crosses out the generalised expression)

(it) the perception that the subtraction had in fact to represent an increase, and thus
an addition (and she concludes that "275 are needed"), and

(iii) the perception that the secret number had to be negative in order for the
subtraction to result in an addition (and she gives as the answer -2.5).

There is no reference as to how she found those numbers, which are thoroughly
incorrect. Nevertheless, her solution exemplifies the process of trying to make sense of the
problem, and the successive changes in the understanding of the problem through this
effort. The conflict between the general whole-part scheme and the situation posed by the
problem is clear, as also are the necessary intervention of a knowledge of how numbers
behave and the disadvantage of having to search through different new models when an
algebraic model would be equally adequate for A>C and A<C.
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Vicky H, FM3
SUMMARY OF FINDINGS AND CONCLUSIONS

As we expected, a hierarchy appeared in relation to the facility levels of the three
problems, with Buckets being the easiest and See- the most difficult; although the
difference between Buckets and Sec+ is not significant for AH8 and FM2, in AHS8 there
is a definite shift towards solutions using equations in Sec+.

Of all students, 83% correctly solved the item 25-37, and 56% correctly solved the
item 20-(-30), which strongly suggests that the inability to produce correct solutions to
Sec- without using equations is due to the students' lack of willingness to operate
numerically, ie, within the Semantical Field of numbers and arithmetical operations; this
behaviour had been observed on the analysis of the previous groups of problems, but what
makes it particularly significant here is the fact that Sec+ and Sec- are not only identical in
terms of their arithmetical articulation, but also all the one-step strategies that are available
to reduce Sec- into a problem that can be modelled by a whole-part model — eg,
presuming that the subtraction "is in fact” an addition”, or simply considering the solution
to Sec+ and applying it as an algorithm to Sec- —— depend in varying degrees on operating

numerically, and the low level of complexity of the problems only highlights this aspect of
the students’ difficulties. '

The percentages quoted at the beginning of the previous paragraph also accentuate
the significance of the fact that many students reconstructed the problem in order to make it
meaningful within the context of wholes and parts, showing that for many students the
first-choice model is a non-algebraic one, in particular, a non-numerical one. Cecilia's
script establishes with great exactness that an analogy can be built between Sec+ and Sec-
in a way to engender a method to correctly solve Sec-, but this analogy is only possible
within the Semantical Field of numbers and arithmetical operations.

Fabiana's solution, on the other hand, shows that the meaning of arithmetical
operations can be adjusted to one's use according to the model being employed when one is
operating in a Non-numerical Semantical Field. The important insight here is that many
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"mistakes” that have been used by researchers to characterise misconceptions might in fact
be conceptions within a Semantical Field other than the one intended by the researcher, ie,
it might be truly useful to consider that those students are not in fact thinking of what the
researchers thought they were.

One important aspect related to the use of algebraic notation emerged. We had seen
in solutions to previous "secret number" problems that employed equations that the
substitution of specific symbols for "secret number” - usually x — was taken by many
students as making the problems’ statements into equations. In the explanations to their
handling of Sec+ and Sec-, a number of students referred to "13x" being the result of

"13x", revealing that the notion of representation was not readily available to them; this is
a central part of meaning in algebraic thinking, and we think the lack of such
understanding might represent a substantial obstacle in dealing, for example, with
substitution solutions to sets of simultancous equations. Also, the lack of the notion of
representation might constitute an obstacle to the development of an understanding of
thinking algebraically as proceeding within the Numerical Semantical Field, and thus, an
obstacle to the constitution of the notion of numerical-arithmetical structure.

Finally, a few scripts—in particular Sophie's and Mi's—threw light into the use of
algebraic and non-algebraic approaches on different stages of the same solution process,
highlighting the possibility of usefully combining algebraic and non-algebraic models, and
at the same time emphasising the dissimilarities between them.

4.6 PATTERN-SALESPERSON-SECRET PROBLEMS

THE PROBLEMS

Charles sells cars, and he is paid weekly,
He eams a fixed £185 per week, plus £35 for each car he selis.

This week he was paid a total of £360.

How many cars did Charles sell this week?
(Explain how you solved the problem and why you did it that way)}

Salesperson
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Her you have a pattern of tiles:

¥ whitet 1D whia 12 whitea M whizs
for for for Tt
1 Bk T becks Inlechas 4 blsckn

One possible formula that gives the number of white tiles that go wilh a cerd
number of black tiles is:

no. of whites = (2 x no. of blacks) + &

How many black tiles are needed, if 1 want to use 988 white tifes?
(Explain how you solved the problem and why you did it that way)

Pattern

¥am thinking of a "secret number".
T will only teH you that

(6 x secretl no.} + 165 = 63

‘The question is: Which is my secret number?
(Explain how you solved the problem and why you did it that way)

Secret
GENERAL DESCRIFTION

(i) Patt, is a problem where both the generation of a pattern of black and white tiles
and a formula relating the number of tiles of each colour on any composition respecting the
pattern are given; the central objective was to investigate whether students would prefer to
solve the problem reasoning directly from the spatial configuration or would use the
formula given, and how they would manipulate those referents;

(ii) Salesp, is a very elementary problem about a salesperson who carns a fixed
salary plus commission for each item sold; we never expected this problem to offer any
difficulty to our students. It was included with the main objective of verifying how the
students would justify the choice of arithmetical operations employed — would any
justification at all be offered; we expected students to explain the use of the operations (eg,
an addition used to know...) but not to justify the choice in terms of a more general

1
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scheme, numerical or otherwise, the reason for our expectation being the great familiarity
with the type of situation®?. The Brazilian version uses fridges instead of cars to make the
numbers in the problem smaller.

(iii) A "secret number" problem, Secret, is stated in a syncopated form, rather than
the usual verbal one; in this problem the solution is a negative number, and we expected it
to be significantly more difficult than the other two. It was included in this group to allow
us to examine the models produced in a situation where a whole-part model is not
immediately available.

DISCUSSION OF POSSIBLE SOLUTIONS
All three problems in this group can be solved with an equation in one unknown,
b+ ax =¢

If this approach is used, the three problems would present a very similar facility
level, as the only one where an equation is not immediately given, Salesp, is very
straightforward in verbal structure,

Patt offered the alternative of working on the basis of perceiving, for example, that
if the three white tiles at each end of the pattern are removed, one is left with a simple 2
whites to 1 black ratio. From this point of view, the formula provided with the problem's
statement would be an unfortunate choice, as the non-algebraic procedure we have just
described would use the same calculations as algebraic solutions employing the formula,
and this makes the more difficult to distinguish between approaches. However, the
alternative would be to give, instead, a formula such as

no, of whites = 2 x (no. of blacks +2) + 2

which is obviously more complex than the one we decided to use, making a direct
comparison with Secret — an important point — more difficult.

Secret could also be solved through the perception that the answer had to be a
negative number, leading to the transformation of the problem into

67 Another situation equally typical and familiar would be, for example, a problem involving
change and the buying of several of the same items.

[

Experimental Study 305

. »



165 - 6n = 63

which would be solved as Sec+ in the previous group of problems, possibly based on the
whole-part relationship.

The obvious solution to Salesp would be to consider that the total income is
composed by the fixed part together with the commission for sold items, so to know how
much came from selling, it is only necessary to take the fixed part from the total income, a
procedure based on the perception of a whole-part relationship.

GENERAL DATA ANALYSIS

Two unexpected results emerged. First, the overall facility level for Secret was
56%, much higher than we expected, specially if one considers that the other "secret
number" problem with a negative answer (Sec-) had one of the lowest facility levels of all
problems (27%)58. Second, in the Brazilian groups Patt was more difficult than Secret,
while in the English groups this is not the case; this fact is surprising given that Patt offers
not only the equation but also the support of a diagram, and even more so if one considers
that AHS8 proved to be very proficient in solving equations. One likely explanation is that
the context of a pattern of tiles might have confused the Brazilian students, as this is a very
unlikely context for a problem in Brazilian schools, while it is a very common one in
English schools. A close examination of the students' solutions will provide further insight
on the reasons for this result.

Also unexpected was the very low level of facility for Patt in FM2 (18%), as this
problem should be familiar to them and offers no difficulty with the numbers.
Nevertheless, while for Secret 71% of the scripts were NATT, 53% of the students in
FM2 attempted a solution to Patt and failed, suggesting that they at least felt the possibility
of producing a correct solution.

In agreement with the result of the previous groups of problems, the Brazilian
groups preferred to use equations whenever they were suggested (Pattern and Secret),
while in the English groups equations were used by only one student in Secret.

Salesp was the easiest problem in all four groups, with an overall facility level of
84%, identical to that of Buckets, in the last group of problems we analysed. As the

68Although the facility level in AH8 is very high (89%), forcing the overall result up, one has
1o observe that the percentages for AH? and FM3 are very much in agreement with the
overall result.
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scripts will further demonstrate, those two problems were treated in very much the same
way, with the choice of operations being taken as "logical" and never justified.

STUDENTS' SOLUTIONS

The Patt problem

All but one correct solutions to Patt from the English students — most of them on
the third year group — were QK CALC, and many of them were justified by appeal to
"reversing the formula”, "reversing the procedure”, etc..(Ian C, FM3; Joe V, FM3; Katy
S, FM3).
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Ian C, FM3
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Joe V, FM3
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Katy S, FM3

Although this type of justification was given to other problems, what is remarkable
here is the high proportion of students producing it, together with the specific notation used
by some students, suggesting a strong influence of taught models. No student actually used
a "boxes and arrows" diagram (figure Patt 1), but the treatment of +2 and +6 as operators,
rather than treating 2 and 6 as operands, is clear. Those solutions are numerical-
arithmetical, as they are guided by properties related to the arithmetical operations only (as
it is made clear in Joe's solution), but they are not analytical, the secret number is perceived
as an initial state and never directly manipulated. Also, the solution process concentrates
only in producing “the way back”, so to speak, and the transformation of the arithmetical
operations into their inverses never involves the manipulation of a numerical-arithmetical
relationship.

x 2 +6

x 988

fig. Patt 1
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In the Brazilian groups, on the other hand, all but three of the correct solutions are
OKEQT. In most cases the solution of the equation is

988 = 2x + 6
988 - 6 =2x
982 = 2x

982
X = Ty = 491

or very similar. As we pointed out before, it is impossible to decide—in the absence of
further explanation about the underlying model—whether this solution is guided by the
"undo" perception linked to the "machine” model, by the perception of the whole-part
relationship, or by a numerical-arithmetical model. In some cases, however, the solution
of the equation involved steps that clearly characterise them as numerical-arithmetical, and
the manipulation of the term involving the unknown characterises the analiticity of the
solution, so those solutions are truly algebraic (Mauricio N, AH8, who uses a normal form
of the equation; Rogério C, AHS8); in Mauricio's explanation we have a further
characterisation of the analiticity of his solution, as the unknown is treated explicitly as a

number.

G5 - o7H 46 DRo GBH LSS € EU
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~adx, + “UHEzo 6. O e rrvo & o p° 0E |
oZx — GBI =0 FiE 1125,
aZX = G52
AT 5352.

e

7= 44/l

Mauricio N, AHS
“There are 988 whites and 1 multiplied by 2 the no. of blacks and that is x. And
added 6. The result is the number of blacks [sic]” (there should be no doubt from

his script that he actually meant "the number of whites")

.
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Rogério C, AH8

In another QKEQT solution (Andrea M, AHS), the evidence for an algebraic
solution is direct from the explanation.

! mmmcmdfo—hnﬁm&bwrwﬁ € femabtin,
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p=agl @M@ots@gJ E PN Wwd?d&mﬂ
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Andrea M, AHS
"in the statement there was the formuola. And also the no. of white tiles, so, it
wis only a matter of substituting into the formula the variable (no. of whites)

by the number given. And then to separate variable from number.”

Three solutions —- all coming from Brazilian students — treated the problem as one
directly involving proportion, most probably snggested by the "8 whites for 1 black, etc.”
subtitles to the illustration®®. Both Mariana Q's (AHS8) and Mairé M's (AH8) solutions are
incorrect due to a mistaken perception of the relationship between the number of white and
black tiles. Mariana's is clearly based on an algebraic model for solving the propoi‘tion: it is

69That no English student made this type of mistake suggests that the unfamiliarity of the
Brazilian students with the problem also played a role.
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numerical-arithmetical and analytical, with the focus being in determining the number of
black tiles.

AL - % (C* = 19, 6

Mariana QO (AHS)
“I found out because the first fraction has to be proportional to the second, the

third and so on..."

Mairé€'s solution, however, is synthetical, as the focus of the solution process is in
determining the multiplier that multiplied by the number of black tiles in the simpler ratio (in
this case, by 1) will produce the number of black tiles corresponding to 988 white tiles.

148 perwcos pory 2 preTes % opma 4 prile S (| toclo-
BRAwD> patd A peeto (8 Vrdes Ce ffmva) S8

qes:4 - .5 xd Sodar groetom ¢ Men

qdd Moy PR 23,9 G?/erc?"’, "Hd ya MP&W (ﬂ"‘ El

MR pcotnff"\@ 601}0‘\(9 A ri)m ~ .&qmdc-fm\a Liorach
o _‘Mm_‘
g aamen gore 134 puos,

Mairé M (AHS)

Left: "988 whites for ? blacks(...)8 whites for 1 black (...)988 whites for 123.5
blacks, but we can't split the tile, so: 988 whites for 124 blacks."

Right: "If for 1 black there are 8 whites (8 times more), then it's oaly a matter
of knowing how many '8' there are in 988 and multiply by 1, because it is 1

black for 8 whites"
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Around a third of all WCALC mistaken solutions resulted from the incorrect use of
the "reverse the formula" approach (Dawn H, FM3)70,

q6& 22494 ~4= 455
s ')LG: e X7 ;—C@?

Dawn H, FM3

In Laura G (AH7) we have a behaviour that is as close as one can get to a pure
syntactical "shuffle": "white”" and "black" are swapped, and the operations "reversed”
without any regard for the arithmetical articulation or to the meaning of the resulting
transformation within the Semantical Field of numbers and arithmetic operations.
Nevertheless — and this is an important point in relation to meaning — from Laura’s point
of view not only the procedure enabled her to find out the answer in an acceptable way, but
she was also able to correctly distinguish the symbols for the operations and associate them
correctly with the symbols for the corresponding reverse operations; however, she has
certainly not grasped the intended meaning that the teacher tried to convey.

™ da oo = (L *Yf_ﬂnmmv ) — 6 Qm
388 .

o= gL -6 _ .

r‘h‘-’,(.v@@p ::.1—\68 T

Laura G, AH7

701t is interesting that at first she incorrectly applics the "reverse the formula" approach,
not regarding the order in which the operations would be performed were the formula being
used. When she tries to check the result against the original formula, it naturally does not
work, but instead of rethinking the solution process, she alters the checking "template” to
fit the mistaken solution procedure.
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It is interesting that although the preferential approach to produce correct answers in
AH7 was to solve the formula as an equation, more than three-quarters of the mistakes
come from WCALC solutions, suggesting that even those solutions "by equation” might
well have been guided by a contextualised model, as a failure to produce an algebraic model
is strongly associated with a failure to produce a contextualised one.

The Salesp problem

As we expected, all the explanations provided with OKCALC solutions (which
account for 77% of all answers) corresponded to the model "take away the fixed part from
the total and see how many cars (or fridges) it corresponds to". The "explanation” for the
initial subtraction is always a non-explanation (ie, “that's what you do"), and there was
never any attempt to relate it explicitly to a whole-part relationship, the procedure being
considered as self-justified (Fabfola, AH7); in a few scripts only there is a slight hint that
the perception of a whole-part relationship might have guided those solutions (Alufzio A,
AH7; Jacob B, FM3; Tarek S, AH7). Both Aiui’zio and Jacob seem to use a comparison of
wholes strategy, while Tarek uses a whole-part decomposition model.
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Fabiola, AR7
She gets a 10,200 salary, so I ook 10,200 from 11,480 {the money she earned)
what is lefi is evidently [thc moncy carned] because of the fridges...” (our

cmphasis)
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Aluizio A, AH7
“Explanation: if she got 10,200 + 160 for each fridge (fixed salary} and this
month she got 11,480, then [ have to calculate the difference between the two

salaries to know how much she got in excess ..." (our emphasis)
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Jacob B, FM3
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Tarek §, AH7
"If the fixed salary of 10,200 is taken from the total income there wiill be left

only the [money] carned from the fridges...”

The focal point here is that in all three cases, the choice of subtraction is not
informed by the arithmetical articulation of an equation, but by the need to evaluate parts
produced through a decomposition of the whole, ie, the arithmetical operations are tools
used to produce a required evaluation, and not informative objects. Nevertheless, a
distinction between the approaches may be made, as the whole-part based model apparently
guiding Alufzio's and Jacob's and Tarek's solutions is certainly more general.

Another illaminating aspect of the scripts, is that in 29% of the OKCALC
solutions, the determination of the number of cars (fridges) sold is done using a number of
different build-up and "build-down” strategies (Helen R, FM3; Derek G, FM2), and in
those cases the evaluation of the "extra" money is not even considered, as the "fixed
salary” (£185 in the English tests) is the target or the starting point, showing conclusively
that those procedures are not "disguised” or “primitive” forms of division or multiplication.
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Helen R, FM3
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Derek G, FM

Ana F (AHS8) uses an "x", but her solution is clearly guided by the "selling”
context, as the accompanying explanation shows; the "x" is used only to represent a value
that can be immediately determined and is never manipulated before it is evaluared. It is
suggested in the script that the focus of attention of the solution process seems to be the
amount the saleswoman got for selling fridges, as Ana first writes "x-+140=?," and this
may be linked to the fact that as many students she saw the evaluation of the "extra” money
as nothing more than evident and immediately possible.
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Ana F, AHS ,
"The amount of money Carla got, minus the money she gets without the
commission, gives the amount of money that divided by her commission by

fridge indicates how many she sold."

The Secret problem

As we saw before, one relevant aspect in relation to this question was the
unexpectedly high facility level, with the exception of FM2, which performed very badly.
The OKEQT solutions were in all cases solved by following the very standard

6x + 165 = 63
6x = 63 - 165 = -102
~102

x = -17

The one aspect of interest is that of all solutionjemploying equations, in only one
case the solver correctly reached the third line then to produce an incorrect result (+17).
When we compare this with the fact that many more similar mistakes were made in Sec-
(analysed in the previous section), there is an indication that using a positive integer as a
divisor makes more sense than using a negative one, possibly because the positive integer
corresponds better to a "sharing” model of division, even if the amount being shared is
negative; a further implication of this would be that the preference for non-numerical
models (in this case the analiticity does not seem to be relevant) might be on the basis of
some obstacles to the learning of the arithmetic of directed numbers.

:
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In some of the OKCALC solutions (Elizabeth W, FM3, for example), the student
considers that the answer has to be a negative number; however, as opposed to similar
situations in solutions to Sec- (see previous group of problems), this consideration was
never central to the process of solution, ie, it did not result in the transformation of the
original problem into an auxiliary one.

L ouWn 6
[OY SO/ /
~OQA SO

(&f

& x Seet

Fheua\ e ez(“

M 63 ond
-—\'““*-IOQ

%)

70 Hnd 4o Z8E cecret norlbes (v
do T 57;/&&40 eoch &c(iQ Qeodn o ;
'H\Q l«JQf (3 éQ_ Ce l/"(f/luj Cquse

— (O diw dack O?ﬁé 75 ~177.
[ comot-fe gure i~ ThS &S COrrectf)/

Elizabeth W, FM3

In one case the student concluded that the problem could not be done because
adding would make always more than 165 (Jayne H, FM2).

Vo don T wninkc Yat Hud Cous bedone becounse
b X M 4+ 15 wowd be more than bBeg bx2a

124+ 165 = 177 woudd o does not equal b3

Jayne H, FM2

Jayne, however, failed to solve both 25-37 and 20-(-10), showing that her
understanding - and possibly perception — of negative numbers was very weak. As a
consequence, the distinction between using a whole-part model or a numerical-arithmetical
one becomes somewhat blurred, as the objects in each of the two Semantical Fields have
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properties that are easily put into correspondence, or, put in a more precise way, it is easy
to establish a much stronger isomorphism between the two Semantical Fields than in the
general case. Nevertheless, and this is a central point in respect to the overall argument of
our research work, it would be incorrect to characterise under those circumstances and on
the basis of the possibility of the isomorphism, solutions using a whole-part model as
involving algebraic thinking. The crucial point to produce the distinction is that arithmetical
operations will still be used as tools only, while operations on the wholes and parts
(joining, separating, etc) will be the object operations.

From the remaining OKCALC solutions, in all but two cases of an explanation
being provided beyond a restatement of the calculations performed, they refer explicitly to
“doing it backwards" or "reversing the process" (Camila A, AH7; Clare B, FM3; Hannah
G, FM3; Shazia A, FM3),

b3 1bL5 Y b+ 4lon=(3
Jioe - ~hoolly O >
for il hoay e
A =
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Camila A, AH7

"Treversed the process”

63 - \CS = -102

-02 =6 = VI

(6x =17)+ 165 =63 ‘
P\T + Lr\fpbnf.{’ad Of -
do {we &umrbf(kmrds {?:3 the oppoente SIS

Clare B, FM3
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Shazia A, FM3

It is clear from those scripts that the resemblance with the "reverse the formula”
procedure used by many students to solve Patt is strong. In Camila's script we have no
further explanation, but Clare makes a distinction between "doing the sum backwards" —
which seems to refer to the process of "going back" —— and "using the opposite signs” —
referring to the "undoing" of the effect of the operators, while Hannah specifically
mentions that she "found out what secret number was before adding 165" (our

_emphasis), showing the "undo" intention. In Shazia's script the indication is even more
complete, as she speaks of "the final number"” {our emphasis), again a clear reference to a
chain of calculations.

Given the reasonably high level of facility for this problem, and that, as we saw in
respect to Sec- (see previous group of problems), the use of whole-part models with
problems involving negative numbers is troublesome, we are led to think that most of the
OKCALC solutions to this problem were guided by a state-operator machine model, as
the one depicted in figure Patt 1. As we have already shown, this model develops within a
Numerical Semantical Field, although it is not an algebraic model in this case for the lack
of analiticity. The important implication of this result is that around 50% of all students
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answering this question were willing to operate within the Semantical Field of numbers and
arithmetical operations. Moreover, it shows that this willingness is not the expression of a
general, conscious, conception, but rather an implicit component of the procedure — either
taught or developed — to deal with this specific type of problem.

Two other aspects are worth mentioning. First, that a state-operator machine model
could be made to work with a problem like Sec- if analiticity becomes a part of the mode
of thinking in which one is operating (see figure Patt 2)

120 - 2x = 315
»L (1)
-2x
120 315
@ )
120 3is
+3x
¢ (3)
315 + 2x = 120
(40)

fig. Patt 2

Such approach has two merits: (1) it can be built entirely within the Semantical Field
of numbers and arithmetical operations, from much simpler cases, and (ii) it introduces the
notion of unknown with an analytical characteristic. A further advantage would be to
strengthen the links between two useful forms of representation of arithmetical articulation,
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namely, the state-operator diagram and the standard algebraic notation. Step (4) in fig. Patt
2 could either be a return to a state-operator model, which would be similar to that used
with Secret, or an algebraic solution of the equation, if the solver sees it as meaningful. In
any case, steps (1), (2) and (3) alone might well serve as an alternative to a justification
based on DSBS, for the transformation

120 - 2x = 315

120 = 315 + 2x

It must be clearly understood that we are not advocating this approach as a panacea

that would provide the solution for all the problems involved in developing an algebraic
mode of thinking, but it certainly is a strong and helpful paradigm from which other
approaches may be developed.

SUMMARY OF FINDINGS AND CONCLUSION

The main point illustrated by the scripts to this group of problems is the possibility
of a model that is clearly numerical-arithmetical but not analytical. Some solutions to
problems in the previous groups had already presented this characteristic (for example,
using a paradigmatic simpler example), but the use of a state-operator machine model
highlighted the fact that it is possible for children in the age group we studied to accept a
mode of thought that involves operating totally within the Semantical Field of numbers and
arithmetical operations; this is particularly relevant because Patt is a problem where a
spatial configuration is present, making clear that the problem is about numbers of tiles and
not "pure” numbers, and yet many students used the numerical-arithmetical model. The use
of a state-operator machine model also offers a singular illustration of the following points:

e arithmetical operators as objects, informing the manipulation process;

*  the possibility of achieving some degree of analiticity in the process, by using
generic or unknown parameters in the arithmetical operators (as in figure Patt
2)

e both structure—-in the form of the arithmetical articulation—and process—-in
the form, for example, of the actual inversion of an operator, or of the actual
chain of calculations—are indissolnble aspects of the manipulation of the
maodel;

Structure in relation to the establishment and manipulation of a model is a notion
that has to accommodate the possibility that there are objects that are not “formally”
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distinguished (eg, both the unknown and the parameters are seen as numbers) but neither
there exists in the model a super-class containing both objects nor all properties applying to
one such object applies to all of them (eg, in the "meaninglessness” of operating on or with
the unknown). The structure of a model is, then, a ner-of meanings, necessarily local, and
not an abstract and "clean™ construction. Even when the establishment of a model is
consciously informed by the knowledge of a more generic, general or abstract knowledge,
it is only in the local sense of a net of meanings that the structure of the model is realised,
and it is precisely in this sense that the term arithmetical articulation expresses the structure
of an algebraic expression as given by its composition in terms of numbers and arithmetical
operations.,

Also, a solution to, say, Patt, using a state-operator machine model is structurally
distinct from one using a whole-part model to model the "formula", and both are
structurally distinct from the analogical solution that is based on a perception of the spatial
configuration, and they are all structurally distinct from an algebraic solution employing an
equation, although the procedural aspects may be similar.

4.7 CONCLUSIONS TO THE CHAPTER

The main result of the experimental study was to confirm that there are different
models underlying students’ solutions; moreover, it has also shown that our distinction
between algebraic and non-algebraic solutions, based on our characterisation of algebraic
thinking, offers a clear and useful framework for distinguishing and characterising those
solutions.

From the point of view of the methodology adopted-—using groups of related
problems, instead of "isolated" items—proved to be a correct and very useful choice, as
many of the aspects of the models that were identified could only be clearly understood by
comparing its use in problems with different contexts and with different numerical
parameters. The decision of not using interviews meant we could not probe in depth some
aspects of the underlying models, but, on the other hand, it reassured us that it is indeed
possible to understand much of those underlying models by examining only pupils’ written
work, an important feature of the methodology, both because of the possibility of carrying
out studies with a larger number of pupils, but also for the teacher who, many times, does
not have the necessary time to accompany closely the discussion that goes on on each

group during classroom activity.
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The most problematic aspect for the students in our study, was that for those unable
1o deal algebraically with the secret number probleins, the process of modelling them into a
non-algebraic model proved to be an impossible, or at least, very difficult, task. The fact
that most of those students could cope with the "contextualised version” of those secret
number problems, led us to conclude that two are the probable sources of difficulties in the
case of those secret number problems: (i) difficulties in interpreting the elements of the
arithmetical expressions in terms of other models; particularly in the case of whole-part
models, expressions of the type

ax+b=¢ and b+ax=¢
were easier to  interpret than expressions of the type
b-ax=c¢

We suggest that this was the case because the former provide a much more direct
representation of "a whole and its parts,” while in the case of the latter, the elements have to
be separately identified, and the whole-part articulation constructed; and (i) this difficulty
is only enhanced by the fact that the notion of a general whole-part model seemstobetoa
great extent alien to what those students see as knowledge applicable to those problems; as
a consequence, making sense of the "decontextualised" secrer number problems implied,
in each case, looking for an adequate interpretation, possibly in terms of another problem
with a "story," possibly in terms of experience with "plain calculations."

Another relevant aspect we were able to identify, was the impertance of what we
called pointers, in the manipulation of non-algebraic models, for example the fact that one
should not add a weight with a length, or that a seesaw will be balanced only if equal
weights are put on each side. As we have already pointed out, but wish to stress, this
aspect suggests that the use of non-algebraic models to facilitate the learning of specific
aspects of algebra-—for example the scale balance—has to be carefully examined, in order
t0 avoid the association of the algebraic procedures learned with those pointers, an
association which may, and probably will, constitute a huge obstacle for the development
of an algebraic mode of thinking, particularly in the case of "concrete" models.

From a more general point of view, it became clear that the central notion being
examined in our study was that of meaning. In this sense, the distinction we used between
elements of the problem and objects of the model, proved very helpful in highlighting the
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choice and interpretation of the elerents of the problem which is involved in the process of
establishing and manipulating a model. _

The non-algebraic models we have identified in the scripts almost always involved
an underlying whole-part articulation. Hypothetical manipulation of the context of the
problem and geometric models appeared only in very few scripts.

The state-operator machine model, which appeared only in the Pattern group of
problems, represents a special case, as it is clearly a numerical but non-algebraic model,
as it lacks analiticity. The fact it was used by so many students, suggest that operating
within a purely numerical environment, and using the arithmetical operations as objects, ie,
manipulating a model informed by them, is not beyond the grasp of those students,
supporting our claim that the development of an algebraic mode of thinking has to be
understood as the process of cultural immersion from which the development of an
intention is produced, and a process that is very much dependent on the exposure to that
mode of thinking. The fact that among Brazilian students we were able to find many more
instances of algebraic models being used than among English students, also supports this
claim, given the distinct emphasis on the teaching of algebra--much greater in Brazil—in
the grades in question.
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Chapter 5
General Discussion




Both the evidence from the historical study and from the experimental study
showed that our characterisation of algebraic thinking—arithmeticity, internalism, and
analiticity—provides an adequate framework for distinguishing different ways of
modelling problems and of manipulating those models. Moreover, we have also shown
that by distinguishing those different modes of thinking, we were able to identify the
tensions underlying the production of an algebraic knowledge, as well as the sources of
the difficulties faced by the students in our experimenta! investigation and the
constrainis acting upon the development of an algebraic knowledge in historically
situated mathematical cultures.

The central issue which provided the thread followed in our investigation is that
of meaning. We identified two ways in which the issue of meaning is related to our
study of algebraic thinking.

First, an "algebraic verbal problem" can be scen either as the problem of
determining the required measure(s) or as the problem of determining a number or
numbers which satisfy some given arithmetical conditions; in the case of "purely
numerical problems," interpreting it as the problem of determining a measure requires
the extra step of interpreting the elements in the "arithmetical" statements—as, for
example, in the secret number problems in our test papers—as representing or
describing some contextualised problem!. The fact that secref number problems were
consistently more difficult than the corresponding contextualised problems—apart from
the case of the older Brazilian students, who had had a somewhat thorough experience
with using equations to solve problems—indicates that for the students in our
experimental study, interpreting the "arithmetical” statements into another Semantical
Field was not an easy task; both the lack of the pointers we have mentioned in
Chapter 4—eg, "weighits can only be added to or subtracted from, other weights" —
and the lack of taught whole-part models, which could provide a more or less standard
Semantical Field for interpreting the "arithmetical” statements, scem to account for the
failure of s0 many students to make sense of those statements.

The second way in which meaning is related to algebraic thinking, is through
the process of manipulating the model used with a problem. Even if a problem is scen
as the problem of determining a number or numbers which satisfy given conditions, the

conceptions involved in the determination of the concept of number play a central role

I'The quotes in arithmetical are necessary for this precise reason: as the solver makes
sense of the statements by interpreting them in a Semantical Field other than that of
numbers and arithmetical operations, we may safely assume that those statements are
not seen primarily as arithmetical statements; this does not imply, however, that the
solver is intelectually incompetent 1o do so, but only that within his or her
mathematical culture that is not the preferential mode of thinking.
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in determining what can and should be done to manipulate relationships involving
number; the historical study provided precisely the evidence about how
conceptualisations of number are central if we are to understand the mathematical
activity within a mathematical culture--or of an individual. We have clearly shown that
algebraic thinking depends on a symbolic understanding of numbers, but also that
such a symbolic understanding of numbers have to compete with other--quite
acceptable-—conceptions, such as "number as measure.” The tension between a
symbolic understanding of number, which implies that numerical-arithmetical relations
are treated arithmetically, internally, and analytically, ie, algebraically, and an ontology
of number, which says what number is and only from there one determines how it can
be dealt with, is a central issue in the process of developing an algebraic mode of
thinking; our experimental study did not intend to probe into the students' mathematical
conceptions underlying their mathematical activity, but nonetheless, it provided
evidence that the models underlying their solutions to the proposed problems did not
present—in many cases—the gencrality as a method that Jacob Klein indicates as the
central aspect distinguishing Vieta's conceptualisation of algebra from that of
Diophantus, and which is a central characteristic of what he calls the "modern"

conceptualisation of the mathematical activity.

Those two aspects of the relationship between meaning and algebraic thinking
suggest a focus of tension in the development of an algebraic mode of thinking. The
acceptance of the "arithmetical” statements as informative in themselves, ie, as true
arithmetical statements, certainly depends on the possibility of treating them
algebraically, at the same time thinking algebraically depends on the ability to recognise
arithmetical statements as informative in their own right. Qur approach to this question
was to consider algebraic thinking as an intention, more precisely, the intention 10 treat
problems which involve the determination of a number or numbers algebraically,
according to our characterisation of algebraic thinking; the inteniiorz to think
algebraically can certainly evolve from very simple algebraic situations, such as solving
simple equations, but precisely because this infention is not algebra, only a way of
dealing with algebra, the production of an algebraic knowledge, eg, "how 1o solve
equations of a certain type," does not depend on or involves by itself algebraic
thinking. It is only by making that intention explicit, and by contrasting algebraic
thinking with other modes of thinking which can be used to produce algebra, that the
intention of thinking algebraically can be consciously acquired. Moreover, it is only
when such intention is in place that the requirement of a treating arithmetical statements
in a way which is arithmetical, internal, and analytical, can be meaningful,
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In the course of our investigation of the nature of algebraic thinking, two
important distinctions were elicited: (i) that between intrasystemic and extrasystemic
meaning; and, (ii) that between situational and mathematical context.

The former allows us to account for the possibility of an algebraic algebraic
aclivity (as opposed to a non-algebraic one), by making clear that, far from being
meaningless, or semantically weak, the elements involved in algebraic thinking are
meaningful and semantically full, but only when interpreted within the Semantical
Field of numbers and arithmetical operations, ie, there is a shift of referential which
makes the algebraic algebraic activity meaningful. In the historical study we had the
opportunity to refer to the syntactical meaning of the clements in algebraic thinking.
This notion, which might seem paradoxical at first, is essential for one to understand
what algebraic thinking is, and must be accepted not as a linguistic detour to indicate
the usually accepted notion of "rule manipulation,” be it in a poorly or in a highly
skilful manner, but as indicating that there is nothing "outside" the statements being
manipulated which are required to make their elements "meaningful.”

The second of the two distinctions allows us to understand the importance of
one's willingness to shift into a new Semantical Field in the process of thinking
algebraically. It is the shift from the situational context of a problem—or from its local
context in the case of "purely numerical problems" —into a mathematical context,
representing also the transition from the problem to a method for solving the problems
of a class 10 which the specific problem in question belongs, or seems to belong, that
makes algebraic thinking possible; moreover, the very infention of producing that
shift—and, thus, its acceptance—is that which characterises mathematics as an accepted'
cultural object. The refusal by Luria's and by Freudenthal's subjects to operate within a
"context-free” environment strongly indicates that the development of a given
mathematical mode of thinking depends on the acceptance of the fact that certain ways
of organising the world are adequate and useful, ie, that they produce insights which
conform to one's cultural needs. It is exactly in this sense that algebraic thinking has to
be understood as an intention: it represents the affirmation of the need to use
numerical-arithmetical models and to freat those models arithmetically, internally, and
analitically, and it is by affirming this need that it drives the development of an algebraic
knowledge.

By understanding algebraic thinking as a cultural component, rather than a
developmental one, we opened a line of research into the difficulties faced by children
in the learning of algebra; we have shown that non-algebraic modcls used as primary
ways of dealing with problems involving the determination of a number or numbers do
constitute an obstacle to the development of an algebraic mode of thinking, and we have

General Discussion 328



elicited some of those models and their main characteristics. By also showing that
algebraic thinking is better understood as an intention, we demonstrated that the
process of developing an algebraic mode of thinking is one of cultural immersion, and
by doing so, we open the possibility of explaining the "failure” of individuals in
"naturally" developing the ability to think algebraically—as Piaget's theory, for
example, would predict—in terms of a lack of a cultural component. In a similar way,
we think that it is possible to explain, for example, the "failure” of individuals in
"naturally” developing proportional reasoning.

At a deeper level, this aspect of our investigation shows, in particular in relation
to the historical study, that asserting a parallel between the historical development of
algebra and algebraic thinking and the development, by individuals, of an algebraic .
mode of thinking, cannot be understood in the context of scarching for similar "stages
of development." The cultural factors are, we believe, too complex to be "read
through," and it thus seems to be the case that even if an underlying, inevitable,
cognitive engine exists—as Garcia and Piaget say—we are unlike ever to reach it. The
culturalistic approach, on the other hand, highlights knowledge as the result of trying to
make sense of the world, and as the world is presented to us largely through the culture
we live in, and as cultures are in perpetual recreation, the culturalistic approach to the
nature of algebraic thinking provides an immediate understanding of the cultural
process of being initiated to it. |

Although our research has been thoroughly concerned with characterising
algebraic thinking, one of ils clearest results was to reveal the interplay between
algebraic and non-algebraic modes of thinking. First, because non-algebraic models can
provide, as in Davydov's teaching programme, the raw material which is’to be
cxamined algebraically; second, and more important, because the deep distinction
between algebraic and non-algebraic modes of thinking point out to the impossibility of
reducing one io the other, ie, it points out to the inadequacy of substituting algebraic for
non-algebraic "whenever possible"; algebraic thinking can only be understood in the
context of all different modes of thinking, and, thus, the development of non-algebraic
modes of thinking has to be kept as a central objective of teaching. The possibility of
interpreting a problem or situation within different Sernantical Fields, certainly offers a
richer perspective for organising one's world and for producing knowledge.

The results of our investigation point out, although in a provisional manner,
that an early introduction of children to algebraic thinking should be carried out. First,
because it provides a unifying and powerful mathematical context, one in which a
deeper understanding of the structure of large classes of problems is possible. Second,
because it allows the development of an understanding of numbers and of the
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arithmetical operations which is algebraic—and, thus, symbolic—from very early
stages of learning, resulting in a much sounder mathematical foundation to those
aspects of the children's mathematical knowledge. Third, because situational models
and abstract non-algebraic models (eg, whole-part models) are a much more present
part of everyone's life, and opportunities for refining and discussing them are much
more abundant; emphasising the importance of algebraic models, particularly to the
teacher and curriculum developer, is a proper way of restoring a balance which is
necessary. Fourth, and finally, the traditionally accepted view of "algebra as
generalised arithmetic” —under the guise of "numbers first and then algebra™—Ileads in
fact to the formation of sometimes insuperable obstacles to learning, and an early start
with algebraic thinking would address this difficulty.

There are two natural directions to follow after the research presented in this
dissertation, both of which we will pursue.

The first is to extend our research into the history of mathematics, by examining
other historically situated cultures and by considering the non-mathematical
characteristics of the cultures examined. This last aspect is particularly important to
provide a more comprehensive view of the place of the mathematical cultures in their
"parent” cultures.

Second, we will study, this time making extensive use of inferviews, students’
conceptualisations in mathematics, particularly in relation to elements related to
algebraic thinking. At the same time, we will engage in developing a teaching approach
for the development of algebraic thinking in the later years of primary school and early
years of secondary school; some of the exploratory work in this respect has already
been conducted, both in Brazil and in England, and will be reported clsewhere.
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Annex A

Problems used in the exploratory experimental
study



1) Two friends, Maggie and Sandra, went to the Goose Fair.

Maggie brought £12 with her and Sandra brought £18.

During the afternoon, Sandra spent twice as much as Maggie, and when they
left the fair, both of them had the same amount of money.

How much didi each of them spend?

2} A car salesman carns, per week, a fixed £200 plus £35 for each car sold.
This week his total income was £375.
How many cars did he sell this week?

3) A carpenter wants to cut a 73 cm long stick in two, but he wants one of the
pieces to be 17 ¢m longer than the other.
How long will the pieces be?

4) I have a 'secret’ number in my mind.
If I multiply it by three, and take the result away from 210, I'm left with 156.

Now, which is my "secret’ number?

5) Pick up any three consecutive numbers and write them down inside the
squares.

Now add them up and put the result inside the circle.

Finally, divide the number in the circle by three and put this last result in the

triangle.
An example:
lIZI* 13 ““‘I 14 :-f’

Now try with other successive numbers.

(a) will the number in the triangle always be equal to the middle number in the
squares?

(b) Please explain how do you know that your answer {0 (a) is correct.

6) Johanne bought some botiles of milk and paid for it with a £5 note.

(a) can you work oput the change she received? |

(b} If not, what else should you know to be able to work out the change?



7) Suppose you buy two chocolate bars, you pay for it and you get the change.

Then you decide to buy a can of cola.

When you are o pay, the clerk says: "Give me back your cahnge and I'll give
you back your money. Now I add up the prices for the chocolates and the cola and you
pay for the whole sum."

Is this the same as just paying, from the cahnge, for the cola?

Please explain your answer.
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Question

I am thinking of a secret number.
[ will only tell you that

120 - {13 x secret no.) =315

The question is: Which is my secret number?
{Explain how you solved the problem and why you did it that way)

Question 2

To know the number of oranges that wili be in a box, one has to divide the total
number of oranges by the number of boxes, thai is,

{oranges per box) = (nomber of cranges) + (number of boxes)

-
H
2) There e 1715 orznges and we want ohave | b} I yow are told the number of oranges per box
4% oranges per hox, and the nursber of boxes, how would you work
How many boxes are nosded? out the tota! sumber of oranges?

i’
E

SRR Y e e e i e o S e

Question 3

From 2 tank filled with 745 litres of water, 17 buckets of water were taken,
Now there are only 626 litres of water in the 1ank.

How many Litres does a bucket hold?
(Explain how you solved the problem and why you did it that way)

Quesijon 4

Maggie and Sandra wen? to  necords sale.
Maggie took 67 pounds with her, and Sandra took 85 pounds with her (2 lot of
money!!).

Sandra spent four times &s tnuch money as Mzggie spent.
As 2 resuit, when they left the shop both of them had the same amount of
money.

How much did each of tham spend in the sale?
(Explain how you salved the probiem and why you did it that way)

Test paper Al

Question 5

Mr Sweetmann and his famity have to drive 261 miles to get from London to

Leeds,
At a cenain point they decided to stop for Junch.
After lunch they still had to drive 2.7 times as much 25 mcy had ziready

driven,

How much did they drive after lunch? And be%off‘{
{Explain how you solved the problem and why you did it that way)

Question 6



Question 1

{ am thinking of a "secret” number,
Twill only t2lt you that ...

181 - (§2 x secret ne.) = 97

The question is: Which is my secret number?
{Explain how you solved the problem and why you did it that way)

Question 2

The slope of & remp 1 calculated by
dividing the height of the ramp by the
lenghr of its base, That is,

A e

Boga

slope = beight + base

&} If the shope of a ramp i5 1.2 and its base

meanges 15 meres, what s the height of this ramp, bow would you work ous the base of this

ramp?

h)lfywar:g‘vmmeslapcmdduheighm{a

rang?

o i -

Quesiion 3
Gtorye
frees 273 Ky

George throws away four times as
much weight g5 Sam does,

Now they are halanced.

How many kilograms did George throw away? And Sam?
(Explain how you solved the problem and why you did it that way)

Question 9

Ona TV show..,
"Well, Mrs Swermann! You have so far won 731 pounds in our show...
Now [ have 2n offer for you:

CHOICE A: We multiply your prize by 1.2 and then we tpitiply the
Tesult By .. (and the presenier whispered 2 number in
Mrs Sweettnan'’s ¢ar) . of...

CHOICE B: the other way around: we first multiply your prize by the
aumber | have just whispersd © you, and then we
muisiply the result by 1.2... "

What would your choice be? (Justify your answer)

S

Test paper A2

Yueastivg 2

Jotn is organizing 2 big party for children.
He bought & & big boxes of candies, cach one containing 250 candies,

1F 250 children show up to the party, how many candies wiil each of them
{Evereybody gets the same number of candies, of course!)

Explain very ciearly how you saived this problem,

Question §

Sam and George bought tickets to a concert,

Because Sam wanted a beuer seat, his ticket cost four times as mu
George's ticket,

Altogether they speat 74 pounds on the sickets.

What was the cost of each tickes?
{Explain how you solved the problem and why you dit iz that way)




Question 1

Her you have a patiern of tiles:

s
3 whitgs 30 whivee 12 wheie
fox for ot
1 thake 22 blackes 3blactn

One possible formula that gives the number of white tiles that go with 2 cert;

number of black tiles is:

no. of whites = {2 £ no. of blacks} + &

How many black tiles are needed, i 1 wan! to use 988 white tiles?
(Explain how you solved the problem and why you did it that way)

Question 2

At the right you have a sketch of

wooden Hlocks.

A long block put together with
two of the short blacks measure 162 em
ahogether.

If two short biocks are put
together, they stiil measure 28 cm less
than a long block.

What is the lenght of each individual block?
(Explain how you solved the problem and why you did it that way)

Question 3

I am thinking of a "secret” number,
! will only teHl you that ...

i 181 - (12 x secret no.} = 128 - (7 x secret no.)

‘The question is: Which is my secret number?
(Explain how you solved the problem and why you did it that way}

e

Test paper Bl

tickat.

Question 4

Sam and George bought tickets 1o a concert. ] o
Beeanse Sam wanted a better seat, his ticket cost 2.7 times as much 25 George's

Altogather they spent 74 pounds on the sickets.

What was the cost of each ticket? )
{Explain how you solved the probiem and why you git it that way)

Question §

1 am thinking of two secret numbers.
T will only tell you that...

(first no.) + (second neo.) = 185
and
(first me.) - (second mo.) = 47

Now, which are the secret numbers?
{(Explain how you solved the problem out and why you did it that way)

Question 6

A =37 = e

b)Y 20 - 10y = e



wooden blocks.
measure 162 am ghogether.
1ess than a long block.

Question 1

Az the right you have a skeich of

A long block and a shomn biock

A short blocks measures 28 ¢m

What is the lenght of each individual block?
(Expiain how you solved the problem and why you did i that way}

Lecds,

driven.

Question 2
Mr Swecimann and his family have to drive 261 miles 1o get from London 1o
At 2 certain point they decided 1o siop for tunch.
Afer lunch they still had 10 drive four imes as much as they had already

How much did they drive before lunch? And afier lunch?
(Explain how you solved the problem and how you knew what 10 do)

il

Question 3

GesTye
L ey

Soongt throws away 11 bexcks and Sam
hatyws awey 5 brcks.

Sam plus bR A
181 "y ¥

{ Now they s balanced.

What is the weight of one brick ?
{Explain how you saived the problem and why you did it that way)

Question §
Charles seils cars, and he is paid weekly.
He cams 2 fixed £185 per week, plus £35 for each car he sells.
This week he was paid a wota} of £360.

How many cars did Charles sell this week?
(Explain how you solved the problem and why you did it thas way)

Question 4

1 am thinking of a "secrer number”.
T will only tell you that

{6 x secret no.) + 165 = 63

‘The question is: Which is my secret number?
(Expiain how you solved the problem and why you did it that way)

Test paper B2




(uestion 1

T'am thinking of 2 "secret” number.
t will endy teli you that ...

i81 -« {12 x secret no.} = 128 - {7 x secrat no.)

The question is: Which is my secret number?
(Explain how you solved the problem 2nd why you dit it that way)

Cuestion 2

Sam and George bought tickets to 2 concert.

Becauyse Sam wanted 2 better seat, his ticket cost four times as much as
George's ticket.

Altogether they Spent 74 pounds on the tickers.

What was the cost of sach ticket?
(Explain how you solved the problem and why you dit it that way)

RERET T

[T PPECERE

e

Question 3

To know the number of oranges that wili be in 2 box, one has ‘o divids the total
number of oranges by the number of baxes, that is,

(eranges per box) = (number of oranges) + (number of boxes)

) If there are |7 oranges per box and we have b) I you are told the number of aranges per box

49 hoxes. bow many ofanges there are and the total aumber of oranges, how would
alwgether? you work out the aumber of boxes needed?
| |
i
i !
i H
: ;
|
i
;
£ [
Question 4

At Celia's shop you can buy boxes of chocolate bars or you can buy spars bars
as wel.

A box znd theee spare bars cost £8.85.
A box with thrée bars missing cost £5.31

What is the price of 2 box of chocolate bars in Celia's shop? What is the price
of a single bar?
(Explain how you solved the problem and why you dit it that way}

Test paper C1

Question §

Abigail is having a hard time to decide what to dress,
She has socks of 6 different colours, skirts of 5 differemt colours, and T-shirts
of 7 different colours.

In how many different ways can she dress? (Explain how you solved the
problem and why you did it that way)




Question

Maggie and Sandra went 1o a records sale,
Maggie took 67 pounds with her, and Sandra took 85 ponds with her (2 lot of
money!l).

Sandra bought I1 Lp's, and Maggie bought 5 Lp's.
As a result, when they left the shop both of them had the same amount of
money.

whot ©® ¥he price ¢} on L—P?
{Explain how you soived the problem and why you did it that way)

Question 2

Mr Swestmann and his family have o drive 261 miles to get from London e
Leeds.

At a certain point they decided 1o stop for lunch.

After tunch they still had to drive 2.7 times as much 2s they had already
driven.

How much did they drive before lunch? And after lunch?
(Explain how you solved the problem and why you did it that way)

Question 3

[ am thinking of (wo secret numbers.
[ wiil only te}l you that...

{first no.) + {3 x secend no.) = 185
and
(first ne.} - {3 x second no.) = 47

MNow, which are the secret numbers?
{Explain how you solved the problem and why you did it that way)

Question 4

The speed of a car can be calcuiated by dividing the distance covered by the
tme spent to do ii. That is,

speed = distance + time

2) Ff one has ta mavel 351 kilometres at a spesd b) If you are oid the speeq of 2 car and the
of 110 kilomesres per hour, how much time amount of ime it ran, how would you work out
will it take? the distance it covered?

Test paper C2

Question §

Joe's Cafe offers a number of choices of bread, fillings and sauces. Thers 2
84 different combinations altogather.

A customer counted 14 different sauces on the menu.

"

If one wants only bread and filling, how many choices are available?
(Explain how you solved the problem and why you did it that way)




TICKET AND DRIVING

A7) 1 || Am T T | W2 g e ]
| T4 (D27 D4 | T27, | T4 [D27] D4 T27! | T4 D27 D4 [T27! ! T4 [D27 ] D4 | T27
(a0 [ 40| 16 16| | 34 [ 34 19 19|36 ]3| 17| 7|44 25 2
A T R I i
S S T - L — I
OKEQT | 042, 015 013! 013 | 073 029 042 053] | 003l 00| 000] 000] | 002 000 000/ 000
OK+370r5 | 043 0.00] 032 006 | 015 003 031 000 | 033] 0.0s| 041 000l | 068 010 080 0.16
OKT&E 000l 000l ool oool | 000 000 000 000 | 000 000 000 006 | 0.02 000 004 0.20
f 0 000, 000 | 000 00O 0.00] 000 | 008 [
W+270r4 | 0020 023 013] 025 | oo0s 005 000 011 | 020 014] 006 000 | 007 032 008 020
WOTH I 005 020 015 038 | 005 039 011 026l | 020 014] 029 029 | 012 027 004 028
[ i ir : t | E ] ! i ;
NATT | 008! 043 025/ 019 | 003 021 0ls 011] | 025 06 024 0.65 | 0.07] 031 004 0.16
R ! i I I ! : T ; 1
IR I ]
oK | 08s 015] 044 015 | 088 032 074 053] | 036 011 041 006/ | 072] 010 084] 036
WRONG | 007 043) 031 063 | 011 048 011 037 | 040 028 035 029 | 019] 059 0.12] 048
NATT | 008 043 025 019 | 003 021! 016 011 | 025 061, 024/ 065 | 007 031 0.04 016




Annex C
Data on the groups in the main experimental study



Group: AH7 (Brazilian 7th graders)
Total no. of students: 56
Average age (yrs.mths): 13.11
Standard deviation (yrs.mths): 0.9

Group: AHS (Brazilian 8th graders)
Total no. of students: 53
Average age (yrs.mths): 15.0
Standard deviation (yrs.mths): 1.0

Group: FM2 (English 2nd year)
Total no. of students: 53
Average age (yrs.mths): 13.2
Standard deviation (yrs.mths): 0.4

Group: FM3 (English 3rd year)
Total no. of students: 66
Average age (yrs.mths): 14.3
Standard deviation (yrs.mths): 0.3

Group: ALL
Total no. of students: 228
Average age (yrs.mths): 14.1
Standard deviation (yrs.mths): 0.11

Observation: In Brazilian groups, the much greater standard deviation is due 1o the fact
that students can actually fail a whole year, which does not happen in English schools.



Annex D

Tables of frequencies for the problems in the main
experimental study



TICKET AND DRIVING

AH7 | ! " JAR8 FMZ FM3

T4 |D27| D4 T27| | T4 |D27 D4 |T27| | T4 |D27| D4 |[T27]|| T4 |D27| D4 | T2.7

40 | 40 | 16 | 16 34 | 34 15 | 19 3 136 | 17 | 17 | 4 4 | 25 25

* !
OKEQT 0.42{ 015 0.13; 0.3 073; 029 0.42; 053 | 003 005 000, 000| | 0.02| 0001 0.00 0.00
OK +3.70r 3 043 000] 032 006 015 003 031] 000, | 033| 0.06] 041 000] | 068 010, 0.80 0.6
OKT&E 0.00, 0.00] 0.00] 0.00 000, 0.00 000 000 | 000 000 000 006 | 002 000 004 020
W +2.7 or 4 0.02/ 023 013 025 0.06/ 009 000 011 | 020 0.14; 0.06 000 ; 007 032 C.08 020
WOTH 0.05| 020{ 019! 038 0.05| 039 011 026/ | 020 014 029 029 | 012] 027/ 004 028
NATT 0.08| 043 025 019 0.03| 0211 016/ 011] | 025/ 061] 024 065 | 0.07 031 0.04 016
; | :

OK 085 0.15 044| 019 088 032 074] 053 | 036 0117 041 006 | 072 01¢ 084 036
WRONG 007 043] 031| 063 0.11 048/ 011 037 | 040[ 028 035 029 | 019 0.59 012/ 048
NATT | 0.08 043 025 019 0.03) 021 016 011 025 0.61] 024 065 | 007 031 004 016




SEESAW-SALE-SECRET NUMBER ("E"="Seesaw"; "A"="Sale.”"}

A7 AHS8 | [FM2 | | [FM3

E11-5. BAx [All-5{ Adx [SecNo| (Ell-5 Edx |All-5] Adx SecNo [El1-5) Edx |Al1-5] Adx ;SecNo |[EI1-5| E4x |All-5| Adx |SecNo

D16 | 20 119 21 |35 0 190 17 |17, 17 (36| 17 [ 20 | 16 ; 20 | 33 || 25| 24 | 17 | 24 | a
OKEQT 006 0.14 | 0.05| 024 | 0.40 | 0.6 047 035! 047 | 0.88 | | 0.00| 0.05 | 0,00 | 0.10  0.001 | 0.00 | 0.04 | 0.00 | 0.00 | 0.10
OKCALC 013 000 | 0.16 | 0.00 | 0.03 | | 000 0.00 006 0.00 | 0.00| | 0.06| 0.00 | 0.00 | 0.00 | 0.03 | 0.44 | 0,08 | 0.35 | 0.04 | 0.05
OKT&E | 0.00 | 0.00 | 0.007 0.00 | 0.00| | 0.00| 0.00| 000! 0.00 | 0.00| | 012|000 | 038 | 0.15] 000, | 0.20 | 013 | 0.24 | 033 | 0.00
WEQT 1013/ 010 | 005 005,009 | 032]012/018/ 024 |006] | 0.00| 0.00 | 0,00 | 0.00 | 0.00| | 0.00 | 0.00 | 0.00 | 0.04 | 0.10
WCALC 1025 043 | 0311 043 008 | 010|012, 0.12: 0.06 0.03| | 0.41| 0.60 | 0.38 | 020 | 037 | 024 | 042 | 024 | 037 | 0.43
NATT 044 | 033 | 042 | 029 | 040 | 042 029 | 029] 024  0.03| | 041 035025 055,058 | 012] 033 | 018 021 | 031
OK 019 014 | 021 | 024 | 043 | | 016 047 | 041 047 088 | 0.18] 005 | 038 | 0.25 | 0.04| 064 025 | 059 | 038 | 0.15
WRONG 038 ] 052 | 037 048 | 017 | [ 042|024 029 029 | 009 | 041 | 0.60 | 038 | 0.20 | 037 | 024 | 042 | 024 | 042  0.53
NATT 0441 033 | 042 ] 020 040! | 042] 029 029 024 003 | 041} 035 025 055,058 012 | 033 | 024 | 021 | 031




CARP-CHOC-SECRET NUMBER

AH7 | AH8 E M2 FM3 |

Choc {Carpl-1| Carpl-2 | Sysi-1 | Sysl-3 | Choe Carpl-1 Carpl-2§Sysl-l Sysl-3| | Choc | Carpl-1i Carpl-2! Sysl-1|Sysl-3|| Choc {Carpl-1|Carpl-2| Sysi-1; 8ys1-3

19 | 16 16 16 | 16 | 17| 19 19 | 19 | 19 16 | 17 17 17 | 17 17 | 25 25 | 25 | 25

] !

OKEQT | 005| 019 | 013 | 006 | 011 | 047! 079 | 047 ' 079 | 082 . 000| 000 000 | 000 | 0.00 | 0.00| 0.00 | 0.04 | 0.04 | 0.00
OKCALC| 074 | 050 | 031 « 000 | 000 || 018 011 | 005 | 0.00 | 0.00 ' 013| 0.00 | 0.00 | 000 | 0.06 | 029 | 0.3 | 040 | 012 | 0.06
OKT&E | 0.00 | 000 | 000 | 0.06 | 0.00 || 0.00! 000 | GO0 | 0.00 | 0.00 {1000 006 | 006 | 0.06 | 0.00 || 0.00 | 008 | 008 | 020 | 0.00
WEQT | 000 | 000 | 000 | 013 | 042 || 012} 005 | 042 | 0.16 ' 018 | 006| 000 | 000 | 000 | Q.00 || 000 | 000 & 004 | 004 | 006
WCALC | 016 ] 031 | 044 | 019 | 011 || 012] 005 | 005 | 000 | 000 || 044| 065 | 071 04l | 038 || 047 | 024 & 024 | 012 | 04l
NATT | 005! 000 | 013 | 056 | 037 || 012] 000 | 000 | 005 000 | 038| 025 | 024 | 05 | 05 || 024 012 | 020 | 048 | 047
OK 079 060 | 044 | 012 | 011 | 065 090 | 052 | 079 082 | 013| 006 | 006 | 006 | 006 || 029 064 | 052 | 036 | 0.06
WRONG | 0.16 | 031 | 044 | 032 | 053 11 024] 010 | 047 016 | 018 | 050 | 065 | 071 | 041 | 038 || 047 | 024 | 028 | 016 | 047
NATT 005| 000 | 013 | 056 | 037 /012, 000 | 000 | 005 | 000 |1038| 029 | 024 | 053 | 056 || 024 012 | 020 | 048 | 047




BUCKETS

AH7 | AHS FM2 FM3 | 3
Buckets | Sec+ | Sec- || Buckets | Sec+ | Sec- | | Buckets | Sec+ | Sec- | | Buckets| Sec+ | See-
21 21 | 21 7 1717 20 20 0 20! 24 24 | 24
OKEQT | 005 | 024 | €.10 029 | 1.00 | 0M1 000 005!005 | 000 | 0.00 | 0.00
OKCALC 090 | 025 | 005 || 059 | 0.00 | 0.00 060 | 045 010! 088 | 050|017
OKT&E | 000 | 000 | 0.00 0.06 | 0.00 | 0.00 0.00 ! 0.05| 0.00 000 | 0.17 | 0.00
WEQT L 0.14 | 048 | 0.00 | 0.29 0.00 | 0.00 0.04 | 0.00
WCALC 024 | 0.19 0.00 | 0.00 0151 040 | | 0.13 | 0.71
NATT 0.00 | 0.10 | 0.19 006 | 000 000, 020 1030 045 | 004 | 017 | 013
| ! T !
OK 095 | 052 0.14 1] 054 | 1.00 | 071 0.60 | 0.55| 0.15 0.88 | 067 | 0.17
WRONG| 005 | 038 | 067 || 000 000 025, 020 |015!040 | 008 | 0.17 | 071
NATT | 000 [ 010] 019 | 006 | 0.00 000 | 020 | 030 045 @ 004 | 0.17  0.13




PATTERN-SALESPERSON-SECRET NUMBER

| AH7 | AH7 | AH7 AH8 | AH8 | AH8 | | FM2 | FM2  FM2 | FM3 | FM3 | FM3

Pattern | Salesp. | SecNo | | Pattern | Salesp. | SecNo | | Patiern | Salesp. | SecNo } Pattern | Salesp. | SecNo

16 16 16 19 19 1o |17 | 1 17 | 25 25 25

OKEQT 031 | 000 | 038 058 | 0.16 | 079 000 | 000 | 000 | 000 | 0.00 | 0.04
OKCALC 006 | 075 | 019 000 0 079 011 || 018 065 000 | 060 | 084 | 05
OKTA&E 0.06 | 0.00 | 0.00 005 000 000 || 000 | 012 006 0.04 | 004 | 004
WEQT 013 | 000 | 019 | | 011 | 005 | 0.1l 000 | 000 | 0.00 0.00 | 0.00 | 0.00
WCALC 043 | 019 | 019 | | 021 | 000 | 0.00 053 | 012 ; 0.24 032 | 004 | 016
NATT 000 | 006 | 006 | | 005 | 0.00 | 0.00 029 | 012 | 0.71 004 | 008 | 020
OK 044 | 075 | 0.56 063 | 095 | 089 0.18 | 076 | 0.06 064 | 088 | 064
WRONG 056 | 019 | 038 | | 032 | 0.05 | 0.1l 053 | 012 | 0.24 032 | 004 | 0.6
NATT 000 | 006 | 006 | | 005 | 000 | 0.00 029 | 012 | 071 004 | 008 | 0.20




Annex E

Overall facility levels for all problems in the main
experimental study



Overall facility levels

Questions Location in test % of correct
e ____papers answers
§§ndwiches ‘ 12 ]
Driving [2.7) v Al ) 16
Seesaw [4x] Y N
Slope B Az | .
x3y.x3y |/ cz %
120-130=315 | . i AL 27|
Tickets [2.7] s Bl 30
§E§:_s”§ﬂf [11-5] o 3 B2 o 32
Sale [x, 4x] K4 Al 33
A4y, X-y I A Bl 35
181-120=128Tn | /| B1 37
Salefits]y  |v| c2 | 3
Clothescombin. | | €1 3
Carp [1-2] 7/ Bl 40
SpeedB <2 46
Choc [a+3b, a-3b] e c1 48
Pattem | s B1 48
Slope A A2 50
TV [commutativ.] gz o 50
20-(-10) - Al 6 ]
6n+165=63 v B2 56
SpeedA ¢e2 8T
Carp [1-1] 1Y B2 58
Driving [4] | vl B2 | 64
181-120=97 /| A2 67
Tickets [4] s a0 T
E_)rangeSB 1 Al B 78 ]
2537 1 a 8 |
Sa]cspc_l_‘g‘:on __,.1,( B B2 84 -
Buckets R 4 Al ... S
Oranges A o Al 88
Candics ) A2 94

(Not all locations provided; marked items are analaysed in the dissertation)
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